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General Ideas and Definitions

General Ideas

Three mains definitions.
1 Supports or set of samples (example all the samples with replacement

with fixed sample size n)
2 Sampling design or multivariate discrete positive distribution.
3 Sampling algorithms (applicable to any support and any design), ex:

sequential algorithms.

The application of a particular sampling algorithm on a sampling
design defined on a particular support gives a sampling procedure.
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General Ideas and Definitions

Population

Finite population, set of N units {u1, . . . , uk , . . . , uN}.
Each unit can be identified without ambiguity by a label.

Let
U = {1, . . . , k , . . . ,N}

be the set of these labels.
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General Ideas and Definitions

Variable of Interest

The total Y =
∑
k∈U

yk ,

The population size N =
∑
k∈U

1,

The mean Y =
1

N

∑
k∈U

yk ,

The variance σ2
y =

1

N

∑
k∈U

(
yk − Y

)2
.

The corrected variance V 2
y =

1

N − 1

∑
k∈U

(
yk − Y

)2
.
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General Ideas and Definitions

Sample Without Replacement

A sample without replacement is denoted by a column vector

s = (s1 · · · sk · · · sN)′ ∈ {0, 1}N ,

where

sk =

{
1 if unit k is in the sample
0 if unit k is not in the sample,

for all k ∈ U.

The sample size is n(s) =
∑

k∈U sk .
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General Ideas and Definitions

Sample With Replacement

Samples with replacement,

s = (s1 · · · sk · · · sN)′ ∈ NN ,

where N = {0, 1, 2, 3, . . . }
and sk is the number of times that unit k is in the sample.

The sample size is

n(s) =
∑
k∈U

sk ,

and, in sampling with replacement, we can have n(s) > N.
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General Ideas and Definitions

Support

Definition

A support Q is a set of samples.

Definition

A support Q is said to be symmetric if, for any s ∈ Q, all the
permutations of the coordinates of s are also in Q.
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General Ideas and Definitions

Particular symmetric supports 1

The symmetric support without replacement: S = {0, 1}N .
Note that card(S) = 2N .
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General Ideas and Definitions

Particular symmetric supports 2

The symmetric support without replacement with fixed sample size
Sn =

{
s ∈ S

∣∣∑
k∈U sk = n

}
.
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General Ideas and Definitions

Particular symmetric supports 3

The symmetric support with replacement R = NN ,
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General Ideas and Definitions

Particular symmetric supports 4

The symmetric support with replacement of fixed size n
Rn =

{
s ∈ R

∣∣∑
k∈U sk = n

}
.
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General Ideas and Definitions

Properties

1 S, Sn, R, Rn, are symmetric,

2 S ⊂ R,
3 The set {S0, . . . ,Sn, . . . ,SN} is a partition of S,
4 The set {R0, . . . ,Rn, . . . ,RN , . . . } is an infinite partition of R,
5 Sn ⊂ Rn, for all n = 0, . . . ,N.
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General Ideas and Definitions

Sampling Design and Random Sample

Definition

A sampling design p(.) on a support Q is a multivariate probability
distribution on Q; that is, p(.) is a function from support Q to ]0, 1] such
that p(s) > 0 for all s ∈ Q and∑

s∈Q
p(s) = 1.

Remark

Because S can be viewed as the set of all the vertices of a hypercube, a
sampling design without replacement is a probability measure on all these
vertices.
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General Ideas and Definitions

Random Sample

Definition

A random sample S ∈ RN with the sampling design p(.) is a random
vector such that

Pr(S = s) = p(s), for all s ∈ Q,

where Q is the support of p(.).
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Expectation, Inclusion, Estimation

Expectation and variance

Definition

The expectation of a random sample S is

µ = E(S) =
∑
s∈Q

p(s)s.

The joint expectation

µk` =
∑
s∈Q

p(s)sks`.

The variance-covariance operator

Σ = [Σk`] = var(S) =
∑
s∈Q

p(s)(s− µ)(s− µ)′ = [µk` − µkµ`].
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Expectation, Inclusion, Estimation

Inclusion probabilities

Definition

The first-order inclusion probability is the probability that unit k is in the
random sample

πk = Pr(Sk > 0) = E[r(Sk)],

where r(.) is the reduction function

r(Sk) =

{
1 if Sk > 0
0 if Sk = 0

π = (π1 · · · πk · · · πN)′.
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Expectation, Inclusion, Estimation

Inclusion probabilities

Definition

The joint inclusion probability is the probability that unit k and ` are
together in the random sample

πk` = Pr(Sk > 0 and S` > 0) = E [r(Sk)r(S`)] ,

with πkk = πk , k ∈ U.

Let Π = [πk`] be the matrix of joint inclusion probabilities. Moreover, we
define

∆ = Π− ππ′.
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Expectation, Inclusion, Estimation

Inclusion probabilities

Result

∑
k∈U

πk = E {n[r(S)]} ,

and ∑
k∈U

∆k` = E {n[r(S)] (r(S`)− π`)} , for all ` ∈ U.

Moreover, if var {n[r(S)]} = 0 then∑
k∈U

∆k` = 0, for all ` ∈ U.
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Expectation, Inclusion, Estimation

Computation of the Inclusion Probabilities

Auxiliary variables xk > 0, k ∈ U.

First, compute the quantities

nxk∑
`∈U x`

, (1)

k = 1, . . . ,N.

For units for which these quantities are larger than 1, set πk = 1.
Next, the quantities are recalculated using (1) restricted to the
remaining units.
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Expectation, Inclusion, Estimation

Characteristic Function

The characteristic function φ(t) from RN to C of a random sample S with
sampling design p(.) on Q is defined by

φS(t) =
∑
s∈Q

e it
′sp(s), t ∈ RN , (2)

where i =
√
−1, and C is the set of the complex numbers.

φ′(0) = iµ, and φ′′(0) = −(Σ + µµ′).
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Expectation, Inclusion, Estimation

Hansen-Hurwitz Estimator

The Hansen-Hurwitz estimator(see Hansen and Hurwitz, 1943) of Y is
defined by

ŶHH =
∑
k∈U

Skyk
µk

,

where µk = E(Sk), k ∈ U.

Result

If µk > 0, for all k ∈ U, then ŶHH is an unbiased estimator of Y .
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Expectation, Inclusion, Estimation

Horvitz-Thompson Estimator

The Horvitz-Thompson estimator(see Horvitz and Thompson, 1952) is
defined by

ŶHT =
∑
k∈U

r(Sk)yk
πk

,

where

r(Sk) =

{
0 if Sk = 0
1 if Sk > 0.
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Sampling Algorithms

Population

Sampling Algorithms
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Sampling Algorithms

Sampling Algorithm

Definition

A sampling algorithm is a procedure allowing the selection of a random
sample.

An algorithm must be a shortcut that avoid the combinatory explosion.
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Sampling Algorithms

Enumerative Algorithms 1

Algorithm Enumerative algorithm

1 First, construct a list {s1, s2, . . . , sj , . . . , sJ} of all possible samples with their
probabilities.

2 Next, generate a random variable u with a uniform distribution in [0,1].

3 Finally, select the sample sj such that

j−1∑
i=1

p(si ) ≤ u <

j∑
i=1

p(si ).
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Sampling Algorithms

Enumerative Algorithms 2

Table: Sizes of symmetric supports

SupportQ card(Q) N = 100, n = 10 N = 300, n = 30

R ∞ − −
Rn

(
N+n−1

n

)
5.1541× 1013 3.8254× 1042

S 2N 1.2677× 1030 2.0370× 1090

Sn
(
N
n

)
1.7310× 1013 1.7319× 1041
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Sampling Algorithms

Sequential Algorithms

A sequential procedure is a method that is applied to a list of units sorted
according to a particular order denoted 1, . . . , k , . . . ,N.

Definition

A sampling procedure is said to be weakly sequential if at step
k = 1, . . . ,N of the procedure, the decision concerning the number of
times that unit k is in the sample is definitively taken.

Definition

A sampling procedure is said to be strictly sequential if it is weakly
sequential and if the decision concerning unit k does not depend on the
units that are after k on the list.
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Sampling Algorithms

Standard Sequential Algorithms

Algorithm Standard sequential procedure

1 Let p(s) be the sampling design and Q the support. First, define

q1(s1) = Pr(S1 = s1) =
∑

s∈Q|S1=s1

p(s), s1 = 0, 1, 2, . . .

2 Select the first unit s1 times according to the distribution q1(s1).

3 For k = 2, . . . ,N do

1 Compute

qk (sk ) = Pr(Sk = sk |Sk−1 = sk−1, . . . , S1 = s1)

=

∑
s∈Q|Sk=sk ,Sk−1=sk−1,...,S1=s1

p(s)∑
s∈Q|Sk−1=sk−1,...,S1=s1

p(s)
, sk =, 0, 1, 2, . . .

2 Select the kth unit sk times according to the distribution qk (sk );

EndFor.
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Sampling Algorithms

Draw by draw Algorithms

The draw by draw algorithms are restricted to designs with fixed sample
size. We refer to the following definition.

Definition

A sampling design of fixed sample size n is said to be draw by draw if, at
each one of the n steps of the procedure, a unit is definitively selected in
the sample.
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Sampling Algorithms

Standard Draw by Draw Algorithm

Algorithm Standard draw by draw algorithm

1 Let p(s) be a sampling design and Q ⊂ Rn the support. First, define p(0)(s) = p(s) and Q(0) = Q. Define also b(0)

as the null vector of RN .

2 For t = 0, . . . , n − 1 do

1 Compute ν(t) =
∑

s∈Q(t) sp(t)(s);

2 Select randomly one unit from U with probabilities qk (t), where

qk (t) =
νk (t)∑
`∈U ν`(t)

=
νk (t)

n − t
, k ∈ U;

The selected unit is denoted j ;

3 Define aj = (0 · · · 0 1︸︷︷︸
jth

0 · · · 0); Execute b(t + 1) = b(t) + aj ;

4 Define Q(t + 1) =
{

s̃ = s− aj , for all s ∈ Q(t) such that sj > 0
}

;

5 Define, for all s̃ ∈ Q(t + 1), p(t+1)(s̃) =
sj p

(t)(s)∑
s∈Q(t) sj p

(t)(s)
, where s = s̃ + aj ;

3 The selected sample is b(n).
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Sampling Algorithms

Standard Draw by draw Algorithm (without replacement)

Algorithm Standard draw by draw algorithm for sampling without
replacement

1 Let p(s) be a sampling design and Q ∈ S the support.

2 Define b = (bk ) = 0 ∈ RN .

3 For t = 0, . . . , n − 1 do
select a unit from U with probability

qk =


1

n − t
E (Sk |Si = 1 for all i such that bi = 1) if bk = 0

0 if bk = 1;

If unit j is selected, then bj = 1;
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Sampling Algorithms

Other Algorithms

Eliminatory algorithms (Chao, Tillé)

Splitting methods

Rejective algorithms

Systematic algorithms

Others algorithms (Sampford)
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Simple Random Sampling

Population

Simple Random Sampling

Yves Tillé () Uneq. prob. sampling November 2010 35 / 81



Simple Random Sampling

Simple Random Sampling

Definition

A sampling design pSIMPLE(., θ,Q) of parameter θ ∈ R∗+ on a support Q is
said to be simple, if

(i) Its sampling design can be written

pSIMPLE(s, θ,Q) =
θn(s)

∏
k∈U 1/sk !∑

s∈Q θ
n(s)
∏

k∈U 1/sk !
, for all s ∈ Q.

(ii) Its support Q is symmetric (see Definition 2, page 9).
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Simple Random Sampling

Simple Random Sampling

Support S Bernoulli sampling

Support Sn Simple Random Sampling Without Replacement

Support R Bernoulli sampling With replacement

Support Rn Simple Random Sampling With Replacement
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Simple Random Sampling

Links between simple designs

BERNWR SRSWOR

BERN

SRSWR

reduction

conditioning on S conditioning on Sn

conditioning on Sn

conditioning on Rn
with 0 ≤ n ≤ N

conditioning on Sn

Figure: Links between the main simple sampling designs
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Simple Random Sampling

Main simple random sampling designs

Notation BERNWR SRSWR BERN SRSWOR

p(s)
µn(s)

eNµ

∏
k∈U

1

sk !

n!

Nn

∏
k∈U

1

sk !
πn(s)(1− π)N−n(s)

(
N

n

)−1

Q R Rn S Sn

φ(t) exp

µ∑
k∈U

(e itk − 1)


 1

N

∑
k∈U

e itk

n ∏
k∈U

{
1 + π

(
e itk − 1

)} (
N

n

)−1 ∑
s∈Sn

e it
′s

WOR/WR with repl. with repl. without repl. without repl.

n(S) random fixed random fixed

µk µ
n

N
π

n

N

πk 1− e−µ 1−
(

N − 1

N

)n

π
n

N
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Simple Random Sampling

Sequential procedure on Bernoulli sampling

Algorithm Bernoulli sampling without replacement

Definition k : Integer;
For k = 1, . . . ,N do with probability π select unit k ; EndFor.
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Simple Random Sampling

Draw by draw procedure for SRSWOR

Algorithm Draw by draw procedure for SRSWOR

Definition j : Integer;
For t = 0, . . . , n − 1 do

select a unit k from the population with probability

qk =

{
1

N−t if k is not already selected

0 if k is already selected;
EndFor.
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Simple Random Sampling

Sequential procedure for SRSWOR

Fan et al. (1962)

Algorithm Selection-rejection procedure for SRSWOR

Definition k , j : Integer;
j = 0;
For k = 1, . . . ,N do

with probability n − j
N − (k − 1)

then

∣∣∣∣ select unit k ;
j = j + 1;

EndFor.
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Simple Random Sampling

Draw by Draw Procedure for SRSWR

Algorithm Draw by Draw Procedure for SRSWR

Definition j : Integer;
For j = 1, . . . , n do

a unit is selected with equal probability 1/N from the population U;
EndFor.
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Simple Random Sampling

Sequential Procedure for SRSWR

Algorithm Sequential procedure for SRSWR

Definition k , j : Integer;
j = 0;
For k = 1, . . . ,N do

select the kth unit sk times according to the binomial distribution

B

(
n −

k−1∑
i=1

si ,
1

N − k + 1

)
;

EndFor.
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Basic Unequal Probability Methods

Unequal Probability Sampling

Unequal Probability Sampling
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Basic Unequal Probability Methods

Why the problem is complex? False method

Selection of 2 units with unequal probability

pk =
xk∑
`∈U x`

, k ∈ U.

The generalization is the following:
- At the first step, select a unit with unequal probability pk , k ∈ U.
- The selected unit is denoted j .
- The selected unit is removed from U.
- Next we compute

pjk =
pk

1− pj
, k ∈ U\{j}.
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Basic Unequal Probability Methods

Why the problem is complex? 2

Select again a unit with unequal probabilities pjk , k ∈ U, amongst the
N − 1 remaining units, and so on.
This method is wrong.
We can see it by taking n = 2.
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Basic Unequal Probability Methods

Why the problem is complex? 3

In this case,

Pr(k ∈ S) = Pr(k be selected at the first step )

+Pr(k be selected at the second step )

= pk +
∑
j∈U
j 6=k

pjp
j
k

= pk

1 +
∑
j∈U
j 6=k

pj
1− pj

 . (3)

We should have πk = 2pk , k ∈ U.
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Basic Unequal Probability Methods

Why the problem is complex? 4

We could use modified values p∗k for the pk in such a way that the
inclusion probabilities is equal to πk .
In the case where n = 2, we should have p∗k such that

p∗k

1 +
∑
j∈U
j 6=k

p∗j
1− p∗j

 = πk , k ∈ U.

This method is known as the Nairin procedure (see also Horvitz and
Thompson, 1952; Yates and Grundy, 1953; Brewer and Hanif, 1983, p.25)
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Basic Unequal Probability Methods

Systematic sampling 1

Madow (1949)
Fixed sample size and exact method.
We have 0 < πk < 1, k ∈ U with∑

k∈U
πk = n.

DefineVk =
k∑

`=1

π`, for all k ∈ U, with Vo = 0. A uniform random

number is generated in [0, 1].
- the first unit selected k1 is such that Vk1−1 ≤ u < Vk1 ,
- the second unit selected is such that Vk2−1 ≤ u + 1 < Vk2 and
- the jth unit selected is such that Vkj−1 ≤ u + j − 1 < Vkj .
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Basic Unequal Probability Methods

Systematic sampling 2

Example

Suppose that N = 6 and n = 3.

k 0 1 2 3 4 5 6 Total
πk 0 0.07 0.17 0.41 0.61 0.83 0.91 3
Vk 0 0.07 0.24 0.65 1.26 2.09 3
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Basic Unequal Probability Methods

Systematic sampling 3

Suppose also that the value taken by the uniform random number is
u = 0.354. The rules of selections are:

Because V2 ≤ u < V3, unit 3 is selected;

Because V4 ≤ u < V5, unit 5 is selected;

Because V5 ≤ u < V6, unit 6 is selected.

The sample selected is thus s = (0, 0, 1, 0, 1, 1).

0 1 2 3

V0 V1 V2 V3 V4 V5 V6

u u + 1 u + 2
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Basic Unequal Probability Methods

Systematic sampling 4

Π =



0.07 0 0 0.07 0.07 0
0 0.17 0 0.17 0.02 0.15
0 0 0.41 0.02 0.39 0.41

0.07 0.17 0.02 0.61 0.44 0.52
0.07 0.02 0.39 0.44 0.83 0.74

0 0.15 0.41 0.52 0.74 0.91

 .
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Basic Unequal Probability Methods

Systematic sampling 5

Algorithm Systematic sampling

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Definition a, b, u real; k Integer;
u = U [0, 1[;
a = −u;

For k = 1, . . . ,N do

∣∣∣∣∣∣
b = a;
a = a + πk ;
If bac 6= bbc then select k EndIf;

EndFor.
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Basic Unequal Probability Methods

Systematic sampling 6

Problem: most of the joint inclusion probabilities are equal to zero.
Matrix of the joint inclusion probabilities:

− 0 0.2 0.2 0 0
0 − 0.5 0.2 0.4 0.3

0.2 0.5 − 0.3 0.4 0.2
0.2 0.2 0.3 − 0 0.3
0 0.4 0.4 0 − 0
0 0.3 0.2 0.3 0 −


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Basic Unequal Probability Methods

Systematic sampling 7

The sampling design depends on the order of the population.

When the variable of interest depends on the order of the file, the
variance is reduced.

Random systematic sampling: The file is sorted randomly before
applying random systematic sampling.
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Unequal Probability Exponential Designs

Exponential family

Definition

A sampling design pEXP(.) on a support Q is said to be exponential if it
can be written

pEXP(s,λ,Q) = g(s) exp
[
λ′s− α(λ,Q)

]
,

where λ ∈ RN is the parameter,

g(s) =
∏
k∈U

1

sk !
,

and α(λ,Q) is called the normalizing constant and is given by

α(λ,Q) = log
∑
s∈Q

g(s) expλ′s.
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Unequal Probability Exponential Designs

Expectation

The expectation

µ(λ) =
∑
s∈Q

spEXP(s,λ,Q)

The function µ(λ) is bijective. (fundamental result on exponential
families).

The most important in an exponential family is its parameter and not
µ or π.
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Unequal Probability Exponential Designs

Main exponential designs

Notation POISSWR MULTI POISSWOR CPS

p(s)
∏
k∈U

µ
sk
k

e−µk

sk !

n!

nn

∏
k∈U

µ
sk
k

sk !

∏
k∈U

[
π
sk
k

(1− πk )1−sk
] ∑

s∈Sn

exp[λ′s− α(λ,Sn)]

Q R Rn S Sn

α(λ,Q)
∑
k∈U

expλk log
1

n!

∑
k∈U

expλk

n

log
∏
k∈U

(1 + expλk ) difficult

φ(t) exp
∑
k∈U

µk (e itk − 1)

 1

n

∑
k∈U

µk exp itk

n ∏
k∈U
{1 + πk (exp itk − 1)} not reducible

WOR/WR with repl. with repl. without repl. without repl.

n(S) random fixed random fixed

µk µk = expλk µk =
n expλk∑
k∈U expλk

πk =
expλk

1+expλk
πk (λ,Sn) difficult

πk 1− e−µk 1− (1− µk/n)n πk πk (λ,Sn)
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Unequal Probability Exponential Designs

Sequential procedure for multinomial design

Algorithm Sequential procedure for multinomial design

Definition k : Integer;
For k = 1, . . . ,N do

select the kth unit sk times according to the binomial distribution

B

(
n −

k−1∑
`=1

s`,
µk

n −
∑k−1

`=1 µ`

)
;

EndFor.
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Unequal Probability Exponential Designs

Draw by draw procedure for multinomial design

Algorithm Draw by draw procedure for multinomial design

Definition j : Integer;
For j = 1, . . . , n do
a unit is selected with probability µk/n from the population U;
EndFor.
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Unequal Probability Exponential Designs

Sequential procedure for POISSWOR

Algorithm Sequential procedure for POISSWOR

Definition k : Integer;
For k = 1, . . . ,N, do select the kth unit with probability πk ;
EndFor.
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Unequal Probability Exponential Designs

Conditional Poisson Sampling (CPS)

CPS = Exponential design on Sn (or maximum entropy design)

Chen et al. (1994) and Deville (2000)

pCPS(s,λ, n) = pEXP(s,λ,Sn) =
expλ′s∑

s∈Sn expλ′s

The relation between λ and π is complex, but there exists the
recursive relation:

πk(λ,Sn) = n
expλk [1− πk(λ,Sn−1)]∑
`∈U expλ` [1− π`(λ,Sn−1)]

(with π`(λ,S0) = 0)

For obtaining λ from π, the Newton method can be used.
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Unequal Probability Exponential Designs

Rejective procedure

For example, select poisson samples until obtaining a fixed sample

size. pCPS(s,λ, n) = pEXP(s,λ,Sn) =
pEXP(s,λ,S)∑

s∈Sn pEXP(s,λ,S)
pEXP(s,λ,S) is a Poisson design
pEXP(s,λ,Sn) is a conditional Poisson design

Warning: the use of a rejective procedure changes the inclusion
probabilities.

The parameter of the exponential design remains the same.
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Unequal Probability Exponential Designs

Idea of implementations: Rejective procedure

The πk of the CPS are given.

Compute λ from the πk by the Newton method.

Compute the inclusion probabilities of the Poisson design

π̃k = exp(λk + C )/[1 + exp(λk + C )].

Select Poisson samples until obtaining the good sample size n.
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Unequal Probability Exponential Designs

Implementation of CPS

Sequential procedure

Draw by draw procedure

Poisson rejective procedure

Multinomial rejective procedure

For all these procedures, λ must first be computed from π. Next, the
implementation becomes relatively simple.
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Unequal Probability Exponential Designs

Link between the exponential methods

POISSWR CPS

POISSWOR

MULTI

reduction

conditioning on S conditioning on Sn

conditioning on Sn

conditioning on Rn

with 0 ≤ n ≤ N

conditioning on Sn
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The splitting method

The splitting method

Splitting Method
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The splitting method

Basic splitting method

Deville and Tillé (1998)

πk is split into two parts π
(1)
k and π

(2)
k that must satisfy:

πk = λπ
(1)
k + (1− λ)π

(2)
k ; (4)

0 ≤ π(1)
k ≤ 1 and 0 ≤ π(2)

k ≤ 1, (5)∑
k∈U

π
(1)
k =

∑
k∈U

π
(2)
k = n, (6)

where λ can be chosen freely provided that 0 < λ < 1. The method
consists of drawing n units with unequal probabilities{

π
(1)
k , k ∈ U, with a probability λ

π
(2)
k , k ∈ U, with a probability 1− λ.

Yves Tillé () Uneq. prob. sampling November 2010 69 / 81



The splitting method

Basic splitting method


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.

.
πk

.

.

.
πN
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1
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Figure: Splitting into two parts
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The splitting method

Splitting method into M parts

Construct the π
(j)
k and the λj in such a way that

M∑
j=1

λj = 1,

0 ≤ λj ≤ 1 (j = 1, ...,M),

M∑
j=1

λjπ
(j)
k = πk ,

0 ≤ π(j)
k ≤ 1 (k ∈ U, j = 1, ...,M),∑

k∈U
π

(j)
k = n (j = 1, ...,M).
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The splitting method

Splitting method into M parts
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Figure: Splitting into M parts
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The splitting method

Minimal Support Design

Denote by π(1), ..., π(k), ..., π(N) the ordered inclusion probabilities. Next,
define

λ = min{1− π(N−n), π(N−n+1)},

π
(1)
(k) =

{
0 if k ≤ N − n
1 if k > N − n,

π
(2)
(k) =


π(k)

1− λ
if k ≤ N − n

π(k) − λ
1− λ

if k > N − n.
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The splitting method

Example: Splitting tree for the minimal support design

(0, 0, 0, 1, 1, 1)

(0, 0, 1, 0, 1, 1)

(0, 1, 1, 0, 0, 1)

(1, 1, 1, 0, 0, 0)

(0.07, 0.17, 0.41, 0.61, 0.83, 0.91)

(0.171, 0.415, 1, 0.049, 0.585, 0.780)

(0.412, 1, 1, 0.118, 0, 0.471)

(0.778, 1, 1, 0.222, 0, 0)

(0, 1, 1, 1, 0, 0)

0.59 0.41

0.585 0.415

0.471 0.529

0.778 0.222
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The splitting method

Splitting into simple random sampling

λ = min

{
π(1)

N

n
,

N

N − n
(1− π(N))

}
, (7)

and compute, for k ∈ U,

π
(1)
(k)

=
n

N
, π

(2)
(k)

=
πk − λ n

N

1− λ
.

If λ = π(1)N/n, then π
(2)
(1)

= 0; if λ = (1− π(N))N/(N − n), then π
(2)
(N)

= 1. At the next step, the problem is thus reduced

to a selection of a sample of size n − 1 or n from a population of size N − 1. In at most N − 1 steps, the problem is solved.
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The splitting method

Splitting tree for splitting into simple random sampling

(0.5, 0.5, 0.5, 0.5, 0.5, 0.5)

(0, 0.6, 0.6, 0.6, 0.6, 0.6)

(0, 0.5, 0.5, 0.5, 0.5, 1)

(0, 0, 0.667, 0.667, 0.667, 1)

(0, 0, 0.5, 0.5, 1, 1) (0, 0, 0, 1, 1, 1)

(0.07, 0.17, 0.41, 0.61, 0.83, 0.91)

(0, 0.116, 0.395, 0.628, 0.884, 0.977)

(0, 0.086, 0.383, 0.630, 0.901, 1)

(0, 0, 0.358, 0.657, 0.985, 1)

(0, 0, 0.344, 0.656, 1, 1)

0.14 0.86

0.058 0.932

0.173 0.827

0.045 0.954

0.688 0.312
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The splitting method

Pivotal Method

At each step, only two unit are modifies i and j .
Two cases: If πi + πj > 1, then

λ =
1− πj

2− πi − πj
,

π
(1)
k =


πk k ∈ U\{i , j}
1 k = i
πi + πj − 1 k = j ,

π
(2)
k =


πk k ∈ U\{i , j}
πi + πj − 1 k = i
1 k = j .
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The splitting method

Pivotal Method

If πi + πj < 1, then

λ =
πi

πi + πj
,

π
(1)
k =


πk k ∈ U\{i , j}
πi + πj k = i
0 k = j ,

and π
(2)
k =


πk k ∈ U\{i , j}
0 k = i
πi + πj k = j .
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The splitting method

Brewer’s Method

Brewer and Hanif (1983, p.26)
Brewer (1975)
draw by draw procedure

λj =

{
N∑

z=1

πz(n − πz)

1− πz

}−1
πj(n − πj)

1− πj
.

Next, we compute

π
(j)
k =


πk(n − 1)

n − πj
if k 6= j

1 if k = j .
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The splitting method

Brewer’s Method

The validity derives from the following result:

Theorem

N∑
j=1

λjπ
(j)
k = πk ,

for all k = 1, . . . ,N,
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The splitting method
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