Algorithms of sampling
with equal or unequal probabilities

Yves Tillé
University of Neuchétel

Euskal Estatistika Erakundea
XXIII Seminario Internacional de Estadistica
November 2010

Uneq. prob. sampling November 2010 1/81



N
Table of Contents

@ General Ideas and Definitions

Q Expectation, Inclusion, Estimation

© Sampling Algorithms

@ Simple Random Sampling

© Basic Unequal Probability Methods

@ Unequal Probability Exponential Designs

@ The splitting method

Yves Tillé () Uneq. prob. sampling November 2010 2/81



Population

General Concepts

Yves Tillé () Uneq. prob. sampling November 2010 3/81



General ldeas

@ Three mains definitions.

@ Supports or set of samples (example all the samples with replacement
with fixed sample size n)

@ Sampling design or multivariate discrete positive distribution.

© Sampling algorithms (applicable to any support and any design), ex:
sequential algorithms.

@ The application of a particular sampling algorithm on a sampling
design defined on a particular support gives a sampling procedure.
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Population

e Finite population, set of N units {u1,..., Uk, ..., un}.
@ Each unit can be identified without ambiguity by a label.

o Let
U=A{1,...,k,...,N}

be the set of these labels.
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Variable of Interest

The total Y = Zyk,
keU

The population size N = Z 1,
keU

- 1
The mean Y = N Zyk,

The variance af, =N Z (yk — 7)2
keU

1 .
@ The corrected variance Vy2 =N_1 (yk -Y
keU

)
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Sample Without Replacement

@ A sample without replacement is denoted by a column vector
1 N
s=(sp -+ sx -+ sy) €40,1}",

where
. { 1 if unit k is in the sample
=

0 if unit k is not in the sample,

for all k € U.

@ The sample size is n(s) = >, Sk-
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Sample With Replacement

@ Samples with replacement,
s=(s; --- s -~ sy) €NV,

where N={0,1,2,3,...}
and sk is the number of times that unit k is in the sample.

n(s) = Z Sk,

keU

@ The sample size is

and, in sampling with replacement, we can have n(s) > N.

Yves Tillé () Uneq. prob. sampling November 2010

8 /81



Support

Definition
A support Q is a set of samples.

Definition

A support Q is said to be symmetric if, for any s € Q, all the
permutations of the coordinates of s are also in Q.
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Particular symmetric supports 1

@ The symmetric support without replacement: S = {0, 1}".
o Note that card(S) = 2N.

(111)

(010

(110)

[~ —/(01)

(000) (100)
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Particular symmetric supports 2

The symmetric support without replacement with fixed sample size

(011) (111)

(010 (110)

(101)

(000) (100)
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Particular symmetric supports 3

The symmetric support with replacement R = NV,

v ;'(.021) ;'(.121) (221)
(020) 1 (120) 1 (220)
| |
I I
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sNo11) | -'(11) | 211)
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Particular symmetric supports 4

The symmetric support with replacement of fixed size n

(020)
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Properties

Q S, S, R, R, are symmetric,

Q@ SCR,

© The set {Sp,...,Sn,...,Sn} is a partition of S,

QO Theset {Ro,...,Rn,.--,Rn,--.} is an infinite partition of R,
Q@ S, C Ry foralln=0,...,N.
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Sampling Design and Random Sample

Definition

A sampling design p(.) on a support Q is a multivariate probability
distribution on Q; that is, p(.) is a function from support Q to |0, 1] such
that p(s) > 0 for all s € Q and

> pls)=1.

s€Q

Remark

Because S can be viewed as the set of all the vertices of a hypercube, a
sampling design without replacement is a probability measure on all these
vertices.
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General Ideas and Definitions

Random Sample

Definition
A random sample S € RV with the sampling design p(.) is a random

vector such that
Pr(S =s) = p(s), for all s € Q,

where Q is the support of p(.).
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Expectation, Inclusion, Estimation

Expectation and variance

Definition
The expectation of a random sample S is

p=E(S)=> p(s)s.

s€Q

The joint expectation

Hke = Z p(s)skse.

s€Q
The variance-covariance operator

= [Zie] = var(S) = > p(s)(s — p)(s — p) = [pte — prucpee]-
s€Q
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Expectation, Inclusion, Estimation

Inclusion probabilities

Definition
The first-order inclusion probability is the probability that unit k is in the

random sample
7k = Pr(Sk > 0) = E[r(Sk)],

where r(.) is the reduction function

. 1 ifS.>0
’(Sk)—{ 0 ifS =0
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Inclusion probabilities

Definition
The joint inclusion probability is the probability that unit k and ¢ are
together in the random sample

Tk = PI‘(Sk > 0 and Sg > 0) = E[I’(Sk)r(Sg)] s

with mg = mp, k € U.

Let M = [m¢] be the matrix of joint inclusion probabilities. Moreover, we

define
A=N-7nx.
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Expectation, Inclusion, Estimation

Inclusion probabilities

Result

> m=E{n[«(S)]},

keU
and

> D =EA{n[r(S)](r(Se) — 7o)}, forall £ € U.

keU

Moreover, if var {n[r(S)]} = 0 then

Z A =0, forallt € U.
keU

Uneq. prob. sampling November 2010 20 / 81



Expectation, Inclusion, Estimation

Computation of the Inclusion Probabilities

@ Auxiliary variables x, > 0, k € U.

o First, compute the quantities
nXxy
DlreuXe’
k=1,...,N.

@ For units for which these quantities are larger than 1, set 7, = 1.

Next, the quantities are recalculated using (1) restricted to the
remaining units.
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Expectation, Inclusion, Estimation

Characteristic Function

The characteristic function ¢(t) from R" to C of a random sample S with
sampling design p(.) on Q is defined by

ss(t) = 3 ep(s) t € BV, ©)
s€Q

where i = v/—1, and C is the set of the complex numbers.

¢'(0)=ip, and  ¢"(0) = —(X + pp').
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Expectation, Inclusion, Estimation

Hansen-Hurwitz Estimator

The Hansen-Hurwitz estimator(see Hansen and Hurwitz, 1943) of Y is
defined by

Vs = Z SkYk
keu Mk
where puy = E(Sk), k € U.
Result
If e > 0, for all k € U, then \A’HH is an unbiased estimator of Y. J
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Expectation, Inclusion, Estimation

Horvitz-Thompson Estimator

The Horvitz-Thompson estimator(see Horvitz and Thompson, 1952) is
defined by

-~ r(S,
Yur = Z UCZ k)yk,

0
keu 'k
where
sy = [0 K Sk=0
g 1 if S >0.
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Population

Sampling Algorithms
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Sampling Algorithm

Definition
A sampling algorithm is a procedure allowing the selection of a random

sample.

An algorithm must be a shortcut that avoid the combinatory explosion.
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Enumerative Algorithms 1

Algorithm Enumerative algorithm

© First, construct a list {s1,s>,...,s;j,...,s,} of all possible samples with their
probabilities.

@ Next, generate a random variable u with a uniform distribution in [0,1].

Jj—1 J
© Finally, select the sample s; such that Zp(s,-) <u< Zp(s,-).
i=1 i=1
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Enumerative Algorithms 2

Table: Sizes of symmetric supports

SupportQ  card(Q)

N =100,n=10 N =300,n=30

R 00
R, <N+:—1
S 2N
S (¥)

) 5.1541 x 1013
1.2677 x 1030

1.7310 x 1013

3.8254 x 10*?
2.0370 x 109

1.7319 x 104!
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Sequential Algorithms

A sequential procedure is a method that is applied to a list of units sorted
according to a particular order denoted 1,...,k,..., N.

Definition
A sampling procedure is said to be weakly sequential if at step

k=1,..., N of the procedure, the decision concerning the number of
times that unit k is in the sample is definitively taken.

Definition
A sampling procedure is said to be strictly sequential if it is weakly

sequential and if the decision concerning unit k does not depend on the
units that are after k on the list.
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Standard Sequential Algorithms

Algorithm Standard sequential procedure

o Let p(s) be the sampling design and Q the support. First, define

as)) =Pr(Si=s1)= > p(s)s1=0,1,2,...
SEQ|S1=51

e Select the first unit s; times according to the distribution g;(s7).

o For k=2,...,NDpo
@ Compute

ak(sk) = Pr(Sk =sklSk—1=sk—1,...,51 =s1)

25€QIS)=5k,Sk_1=5k_ 1.+, S1=s1 P(S)

sk =,0,1,2,. ..
22s€QISk_1=5k_1,---Sy=s1 P(S)

@ Select the kth unit s times according to the distribution gy (sy);

ENDFOR.
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Draw by draw Algorithms

The draw by draw algorithms are restricted to designs with fixed sample
size. We refer to the following definition.

Definition
A sampling design of fixed sample size n is said to be draw by draw if, at

each one of the n steps of the procedure, a unit is definitively selected in
the sample.
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Standard Draw by Draw Algorithm

Algorithm Standard draw by draw algorithm

o Let p(s) be a sampling design and Q C R, the support. First, define p(o)(s) = p(s) and Q(0) = Q. Define also b(0)
as the null vector of RV,

e Fort=0,...,n—1DO

@ Compute v(t) = Yscow sp(D(s);
g Select randomly one unit from U with probabilities g (t), where

o) () :
qk(t) = 72‘3&/”[(0 = t,k € U;

The selected unit is denoted j;
© Definea;=(0 --- 0 1 0 ---0); Execute b(t + 1) = b(t) +aj;
~~
jth
@ Define Q(t +1) = {§ =s —a;, forall s € Q(t) such thats; > 0} ;
568 (s)

Define, for all § € Q(t + 1), pltt1)(g) = L%
@ Define, for all § ( ), p ) S, sj-p(t)(s)

e The selected sample is b(n).

s wheres:§+aj;
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Standard Draw by draw Algorithm (without replacement)

Algorithm Standard draw by draw algorithm for sampling without
replacement

o Let p(s) be a sampling design and Q € S the support.
@ Defineb = (b) =0 € RV,

0 Fort=0,...,n—1DO
select a unit from U with probability

1
——E (5¢|S; = 1 for all i such that b; = 1) if by =0
9k = n—t
0 if by =1;

IF unit j is selected, THEN b; = 1;
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Other Algorithms

e Eliminatory algorithms (Chao, Tillé)
@ Splitting methods

@ Rejective algorithms

@ Systematic algorithms

o Others algorithms (Sampford)
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Population

Simple Random Sampling
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Simple Random Sampling

Definition

A sampling design psivpri(-, 0, Q) of parameter § € R*. on a support Q is
said to be simple, if

(i) Its sampling design can be written

") eru 1/sk!
ZseQ o) [kew 1/5k! 7

(ii) Its support Q is symmetric (see Definition 2, page 9).

for all s € Q.

pSIMPLE(57 0, Q) =
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Simple Random Sampling

@ Support S Bernoulli sampling

@ Support S, Simple Random Sampling Without Replacement
@ Support R Bernoulli sampling With replacement

@ Support R, Simple Random Sampling With Replacement
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Links between simple designs

reduction

BERN

conditioning on & conditioning on S,

BERNWR conditioning on S,

SRSWOR

conditioning on R,
with0<n<N

conditioning on S,
SRSWR

Figure: Links between the main simple sampling designs
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Simple Random Sampling

Main simple random sampling designs

Notation BERNWR SRSWR BERN SRSWOR
us) 1 nl 1 NN —1
b(s) — 11— iy A1 — mN=(s) ™)
eVi keusk! NP kU sl n
Q R Rn S Sp
&(t) x| Z(eitk -1 z > etk ’ 11 {1 + (e"k - 1)} Ny > elt's
PyH : N n
ev keU keU s€Sp
WOR/WR with repl. with repl. without repl. without repl.
n(S) random fixed random fixed
n n
7 — ™ —
k H N N
N —1\" n
Tk 1—e # 1— ( ) T —
N N
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Sequential procedure on Bernoulli sampling

Algorithm Bernoulli sampling without replacement

DEFINITION k : INTEGER,;
For k=1,..., N DO with probability 7 select unit k; ENDFOR.
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Draw by draw procedure for SRSWOR

Algorithm Draw by draw procedure for SRSWOR

DEFINITION j : INTEGER,;

For t=0,...,n—1DO
select a unit k from the population with probability
_ ﬁ if k is not already selected
Ik = { 0 if k is already selected;
ENDFOR.
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Sequential procedure for SRSWOR

Fan et al. (1962)

Algorithm Selection-rejection procedure for SRSWOR

DEFINITION k,j : INTEGER;
J=0;
For k=1,...,N po
with probability ﬁ THEN jefjt_:ql;t k;

ENDFOR.
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Draw by Draw Procedure for SRSWR

Algorithm Draw by Draw Procedure for SRSWR

DEFINITION j : INTEGER;
Forj=1,...,nDO

a unit is selected with equal probability 1/N from the population U,
ENDFOR.
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Sequential Procedure for SRSWR

Algorithm Sequential procedure for SRSWR

DEFINITION k,j : INTECER;
Jj=0;
For k=1,...,N po
select the kth unit s, times according to the binomial distribution

k—1 1
B<n_;si’N—k+l>;

ENDFOR.
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Basic Unequal Probability Methods

Unequal Probability Sampling

Unequal Probability Sampling
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Why the problem is complex? False method

Selection of 2 units with unequal probability

Xk
Pk = ="
dteuXe

The generalization is the following:

- At the first step, select a unit with unequal probability px, k € U.
- The selected unit is denoted ;.

- The selected unit is removed from U.

- Next we compute

ke U.

plo= 1o ke U
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Why the problem is complex? 2

Select again a unit with unequal probabilities pi, k € U, amongst the
N — 1 remaining units, and so on.

This method is wrong.

We can see it by taking n = 2.
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Why the problem is complex? 3

In this case,

Pr(k€S) = Pr(k be selected at the first step )
+Pr(k be selected at the second step )

= pk+ Z PjP)
jeu
J#k

We should have m, = 2py, k € U.
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Basic Unequal Probability Methods

Why the problem is complex? 4

We could use modified values p; for the py in such a way that the
inclusion probabilities is equal to 7.

In the case where n = 2, we should have p; such that

p’.’<

p; 1+Zl_f* =, ke U.
jeu Pj
#k

This method is known as the Nairin procedure (see also Horvitz and
Thompson, 1952; Yates and Grundy, 1953; Brewer and Hanif, 1983, p.25)
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Systematic sampling 1

Madow (1949)
Fixed sample size and exact method.
We have 0 < ¢ < 1, k € U with

Zﬂ'k:n.

k
DefineV) = Zm, for all k € U, with V,, = 0. A uniform random
=1
number is generated in [0, 1].
- the first unit selected k; is such that Vj,—1 < u < Vi,
- the second unit selected is such that Vi, 1 < u+1 < V|, and
- the jth unit selected is such that ij_l <u+4j-1< ij.
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Systematic sampling 2

Example

Suppose that N =6 and n = 3.

k
Tk
Vi

0 1 2 3 4 5 6 Total
0 0.07 0.17 041 0.61 0.83 0.91 3
0 0.07 0.24 065 126 2.09 3

Yves Tillé () Uneq. prob. sampling November 2010

51 / 81



Basic Unequal Probability Methods

Systematic sampling 3

Suppose also that the value taken by the uniform random number is
u = 0.354. The rules of selections are:

@ Because Vb < u < V3, unit 3 is selected;

@ Because V4 < u < V5, unit 5 is selected,;

@ Because V5 < u < Vg, unit 6 is selected.
The sample selected is thus s = (0,0,1,0,1,1).

Vo Vi Vs Vi V4 Vs Vs
L] | | | |
| | | |
0 T 1 T 2 T 3
u u+1 u-+2
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Systematic sampling 4

Yves Tillé ()
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Systematic sampling 5

Algorithm Systematic sampling

DEFINITION a, b, u real; k INTEGER,;
u=Ul0,1J;
a=—u;
b=a;
ForR k=1,... . NDO | a=a+ 7y,
IF |a| # | b] THEN select k ENDIF;
ENDFOR.
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Basic Unequal Probability Methods

Systematic sampling 6

Problem: most of the joint inclusion probabilities are equal to zero.
Matrix of the joint inclusion probabilities:

-0
0 —
02 05
0.2 0.2
0 04

| 0 03

Yves Tillé ()

0.2
0.5
0.3
0.4
0.2

0.2
0.2
0.3

0.3

0.4
0.4

o |
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Systematic sampling 7

@ The sampling design depends on the order of the population.

@ When the variable of interest depends on the order of the file, the
variance is reduced.

o Random systematic sampling: The file is sorted randomly before
applying random systematic sampling.
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Unequal Probability Exponential Designs

Exponential family

Definition

A sampling design pgxp(.) on a support Q is said to be exponential if it
can be written

Pexe(s, A, Q) = g(s)exp [N's — (A, Q)] ,
where X € RV is the parameter,

g =11 -

keU

and a(A, Q) is called the normalizing constant and is given by

a(X, Q) = log Z g(s)expN's.
s€Q
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Expectation

@ The expectation

n(A) = Z spexr(S, A, Q)
s€Q

@ The function p(A) is bijective. (fundamental result on exponential
families).

@ The most important in an exponential family is its parameter and not
W or .
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Main exponential designs

Unequal Probab Exponential Designs

Notation POISSWR MULTI POISSWOR CPS
Sk e~ Hk 1 k
M, e n: 122 s, 1—
pe) [ ~—— — 112 I [ma—m0' =] 3 ewl's —a(r, Sa)l
keu Sk " keu Sk keu SES,
Q R Rn S Sn
L n
a(X, Q) Z exp A log - Z exp Ag log H (1 + exp Ag) difficult
keu " \keu keu

n

" keu

P 1
B(t) exp > py(eh —1) (* > mkexp ifk)
keU
WOR/WR  with repl.

with repl.
n(S) random fixed
nexp Ay
= A = %X
Bk Bk = exp Ak Bk = Sy ey
Tk 1—e Mk 1—(1— pg/n)"

I1 {1+ 7k (exp ity — 1)}
keU
without repl.

random

exp A

Tk = 1+exp Ay

Tk

not reducible
without repl.
fixed

k(X Sp) difficult

k(X Sn)
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Sequential procedure for multinomial design

Algorithm Sequential procedure for multinomial design

DEFINITION k : INTEGER;
For k=1,...,N po
select the kth unit s, times according to the binomial distribution

(”_ZSZ» Ze 1W>.

ENDFOR.
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Draw by draw procedure for multinomial design

Algorithm Draw by draw procedure for multinomial design

DEFINITION j : INTEGER;

Forj=1,...,nDO

a unit is selected with probability ik /n from the population U;
ENDFOR.
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Sequential procedure for POISSWOR

Algorithm Sequential procedure for POISSWOR

DEFINITION k : INTEGER;
For k=1,...,N, DO select the kth unit with probability m;
ENDFOR.

Yves Tillé () Uneq. prob. sampling November 2010 62 / 81



Conditional Poisson Sampling (CPS)

CPS = Exponential design on S, (or maximum entropy design)
Chen et al. (1994) and Deville (2000)

exp\'s

Pcps(57 A, ’7) = pEXP(s7 )‘78n) = m
seSy

The relation between A and 7 is complex, but there exists the
recursive relation:

exp A [1 — mi(A, Sn-1)]
>veu P A [L—7y(A, Sno1)]

@ For obtaining A from 7, the Newton method can be used.

Wk()\,Sn) =n (With 773()\,50) = 0)
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Rejective procedure

@ For example, select poisson samples until obtaining a fixed sample
pEXP(Sa A, S)

scS, pEXP(S7 A, S)

Size' pCPS(Sa A, n) = pEXP(Sa A7‘S‘n) = Z
Pexrp (S, A, S) is a Poisson design
Pexp(S, A, Sp) is a conditional Poisson design

@ Warning: the use of a rejective procedure changes the inclusion
probabilities.

@ The parameter of the exponential design remains the same.
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Idea of implementations: Rejective procedure

The 7y of the CPS are given.

Compute A from the 7, by the Newton method.

Compute the inclusion probabilities of the Poisson design

ix = exp(Ak + C)/[1 + exp(Ak + C)].

Select Poisson samples until obtaining the good sample size n.
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Implementation of CPS

Sequential procedure
Draw by draw procedure

(]
o
@ Poisson rejective procedure
o

Multinomial rejective procedure

For all these procedures, A must first be computed from 7. Next, the
implementation becomes relatively simple.
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Link between the exponential methods

reduction

POISSWOR

onditioning on S conditioning on S,

POISSWR conditioning on S,

CPS

conditioning on R, conditioning on S,

with0<n<N
MULTI
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The splitting method

The splitting method

Splitting Method

Yves Tillé () Uneq. prob. sampling November 2010 68 / 81



Basic splitting method

Deville and Tillé (1998)
7y is split into two parts 7r,(< ) and 7r,(( ) that must satisfy:

Tk = )\7r,((1) +(1- )\)71',((2);

o<t <tand0<7? <1,
S SR
keU keU

where A can be chosen freely provided that 0 < A < 1. The method
consists of drawing n units with unequal probabilities

(2)

7r,((1), k € U, with a probability A
.,k € U, with a probability 1 — A.
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Basic splitting method

Figure: Splitting into two parts
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Splitting method into M parts

Construct the 7r,(<j) and the A; in such a way that
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Splitting method into M parts

T
.
Y by Am
0 ) 0
P » oo
e ﬁivf) ()

Figure: Splitting into M parts
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Minimal Support Design

Denote by m(1), ..., T(«), ---» T(n) the ordered inclusion probabilities. Next,
define

A= min{l—W(N—n),W(N—nH)}a
1 0 ifk<N-n
Tk = 11 ifk>N—n,
" fk<N-n
7T(2) _ 1—A
k)Y 7y — A
T if k>N —n.
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Example: Splitting tree for the minimal support design

(0.07,0.17,0.41, 0.61, 0.83,0.91)

(0.171,0.415, 1, 0.049, 0.585, 0.780)
(0,0,0,1,1,1)
0.58 0.415

(0.412,1,1,0.118, 0, 0.471)
(0,0,1,0,1,1)
0.47 0.529

(0.778,1,1,0.222, 0, 0)
(0,1,1,0,0,1)
0.77 0.222

(1,1,1,0,0,0)(0,1,1,1,0,0)
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Splitting into simple random sampling

) N N
)\:mln{ﬂ'(l);, N_n(lfﬂ(,v))}, (7)

and compute, for k € U,
W _ " @ Tk Ay

ORI O] 1-x

If X = m(yyN/n, then ﬂ(f) 0;if A = (1 — mn))N/(N — n), then 73— 1. At the next step, the problem is thus reduced

o= w) =

to a selection of a sample of size n — 1 or n from a population of size N — 1. In at most N — 1 steps, the problem is solved.
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Splitting tree for splitting into simple random sampling

(0.07,0.17,0.41, 0.61, 0.83, 0.91)

(0,0.116, 0.395, 0.628, 0.884, 0.977)
(0.5,0.5,0.5,0.5,0.5, 0.5)

0.05 0.932

(0, 0.086, 0.383, 0.630, 0.901, 1)
(0,0.6,0.6,0.6,0.6, 0.6)

0.17 0.827

(0,0,0.358,0.657, 0.985, 1)
(0,0.5,0.5,0.5,0.5, 1)
0.04 0.954

(0,0, 0.344,0.656, 1, 1)
(0,0, 0.667,0.667, 0.667, 1)

0.68 0.312

(0,0,0.5,0.5,1,1) (0,0,0,1,1,1)
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Pivotal Method

At each step, only two unit are modifies / and j.
Two cases: If ; +7; > 1, then

\ = 1—m; ’
2—m —
Tk ke U\{i.j}
A ={1 k=i
7[','—{-71'j—1 k=],
Tk ke UL J}
7D =0 mtm—1 k=i
k iy
1 k=j.
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Pivotal Method

If m; +7; <1, then

A=
T+ T
T k e U\{i,j} T ke U\{i,j}
7r/(<1): mit+m k=i and 77(2): 0 k=i
0 k:_], i+ 7 k:J
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The splitting method

Brewer's Method

Brewer and Hanif (1983, p.26)
Brewer (1975)

draw by draw procedure

N -1
N = {Z’R’z(n—ﬂz)} 7rJ-(n—7rJ-).

ot 1—m, 1—m;
Next, we compute
-1
LG TP
T = n—mj;
1 if k=j.
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Brewer's Method

The validity derives from the following result:

Theorem

N .
Z )\j7r,((1) = Tk,
j=1

forallk=1,... N,
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