

Algorithms of sampling with equal or unequal probabilities

Yves Tillé
University of Neuchâtel

Euskal Estatistika Erakundea
XXIII Seminario Internacional de Estadística
November 2010

Table of Contents

- 1 General Ideas and Definitions
- 2 Expectation, Inclusion, Estimation
- 3 Sampling Algorithms
- 4 Simple Random Sampling
- 5 Basic Unequal Probability Methods
- 6 Unequal Probability Exponential Designs
- 7 The splitting method

Population

General Concepts

General Ideas

- Three mains definitions.
 - ① Supports or set of samples (example all the samples with replacement with fixed sample size n)
 - ② Sampling design or multivariate discrete positive distribution.
 - ③ Sampling algorithms (applicable to any support and any design), ex: sequential algorithms.
- The application of a particular *sampling algorithm* on a *sampling design* defined on a *particular support* gives a sampling procedure.

Population

- Finite population, set of N units $\{u_1, \dots, u_k, \dots, u_N\}$.
- Each unit can be identified without ambiguity by a label.
- Let

$$U = \{1, \dots, k, \dots, N\}$$

be the set of these labels.

Variable of Interest

- The total $Y = \sum_{k \in U} y_k$,
- The population size $N = \sum_{k \in U} 1$,
- The mean $\bar{Y} = \frac{1}{N} \sum_{k \in U} y_k$,
- The variance $\sigma_y^2 = \frac{1}{N} \sum_{k \in U} (y_k - \bar{Y})^2$.
- The corrected variance $V_y^2 = \frac{1}{N-1} \sum_{k \in U} (y_k - \bar{Y})^2$.

Sample Without Replacement

- A sample without replacement is denoted by a column vector

$$\mathbf{s} = (s_1 \ \cdots \ s_k \ \cdots \ s_N)' \in \{0, 1\}^N,$$

where

$$s_k = \begin{cases} 1 & \text{if unit } k \text{ is in the sample} \\ 0 & \text{if unit } k \text{ is not in the sample,} \end{cases}$$

for all $k \in U$.

- The sample size is $n(\mathbf{s}) = \sum_{k \in U} s_k$.

Sample With Replacement

- Samples with replacement,

$$\mathbf{s} = (s_1 \ \cdots \ s_k \ \cdots \ s_N)' \in \mathbb{N}^N,$$

where $\mathbb{N} = \{0, 1, 2, 3, \dots\}$

and s_k is the number of times that unit k is in the sample.

- The sample size is

$$n(\mathbf{s}) = \sum_{k \in U} s_k,$$

and, in sampling with replacement, we can have $n(\mathbf{s}) > N$.

Support

Definition

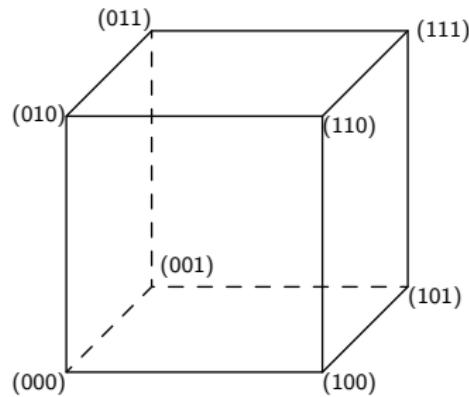
A support \mathcal{Q} is a set of samples.

Definition

A support \mathcal{Q} is said to be symmetric if, for any $\mathbf{s} \in \mathcal{Q}$, all the permutations of the coordinates of \mathbf{s} are also in \mathcal{Q} .

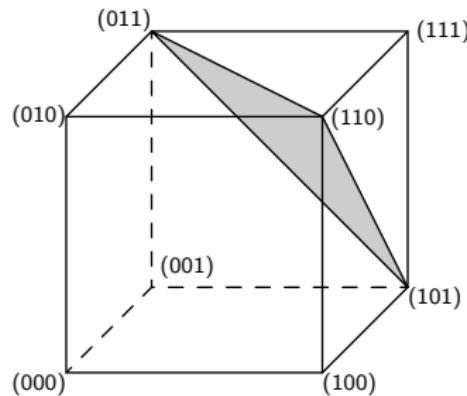
Particular symmetric supports 1

- The symmetric support without replacement: $\mathcal{S} = \{0, 1\}^N$.
- Note that $\text{card}(\mathcal{S}) = 2^N$.



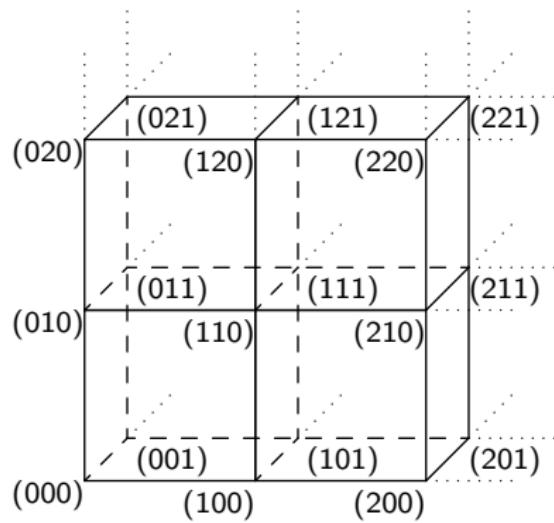
Particular symmetric supports 2

The symmetric support without replacement with fixed sample size
 $\mathcal{S}_n = \{\mathbf{s} \in \mathcal{S} \mid \sum_{k \in U} s_k = n\}.$



Particular symmetric supports 3

The symmetric support with replacement $\mathcal{R} = \mathbb{N}^N$,



Particular symmetric supports 4

The symmetric support with replacement of fixed size n

$$\mathcal{R}_n = \{\mathbf{s} \in \mathcal{R} \mid \sum_{k \in U} s_k = n\}.$$



Properties

- ① $\mathcal{S}, \mathcal{S}_n, \mathcal{R}, \mathcal{R}_n$, are symmetric,
- ② $\mathcal{S} \subset \mathcal{R}$,
- ③ The set $\{\mathcal{S}_0, \dots, \mathcal{S}_n, \dots, \mathcal{S}_N\}$ is a partition of \mathcal{S} ,
- ④ The set $\{\mathcal{R}_0, \dots, \mathcal{R}_n, \dots, \mathcal{R}_N, \dots\}$ is an infinite partition of \mathcal{R} ,
- ⑤ $\mathcal{S}_n \subset \mathcal{R}_n$, for all $n = 0, \dots, N$.

Sampling Design and Random Sample

Definition

A sampling design $p(\cdot)$ on a support \mathcal{Q} is a multivariate probability distribution on \mathcal{Q} ; that is, $p(\cdot)$ is a function from support \mathcal{Q} to $]0, 1]$ such that $p(\mathbf{s}) > 0$ for all $\mathbf{s} \in \mathcal{Q}$ and

$$\sum_{\mathbf{s} \in \mathcal{Q}} p(\mathbf{s}) = 1.$$

Remark

Because \mathcal{S} can be viewed as the set of all the vertices of a hypercube, a sampling design without replacement is a probability measure on all these vertices.

Random Sample

Definition

A random sample $\mathbf{S} \in \mathbb{R}^N$ with the sampling design $p(\cdot)$ is a random vector such that

$$\Pr(\mathbf{S} = \mathbf{s}) = p(\mathbf{s}), \text{ for all } \mathbf{s} \in \mathcal{Q},$$

where \mathcal{Q} is the support of $p(\cdot)$.

Expectation and variance

Definition

The expectation of a random sample \mathbf{S} is

$$\mu = E(\mathbf{S}) = \sum_{\mathbf{s} \in \mathcal{Q}} p(\mathbf{s})\mathbf{s}.$$

The joint expectation

$$\mu_{k\ell} = \sum_{\mathbf{s} \in \mathcal{Q}} p(\mathbf{s})s_k s_\ell.$$

The variance-covariance operator

$$\Sigma = [\Sigma_{k\ell}] = \text{var}(\mathbf{S}) = \sum_{\mathbf{s} \in \mathcal{Q}} p(\mathbf{s})(\mathbf{s} - \mu)(\mathbf{s} - \mu)'$$

$$= [\mu_{k\ell} - \mu_k \mu_\ell].$$

Inclusion probabilities

Definition

The first-order inclusion probability is the probability that unit k is in the random sample

$$\pi_k = \Pr(S_k > 0) = E[r(S_k)],$$

where $r(\cdot)$ is the reduction function

$$r(S_k) = \begin{cases} 1 & \text{if } S_k > 0 \\ 0 & \text{if } S_k = 0 \end{cases}$$

$$\boldsymbol{\pi} = (\pi_1 \ \cdots \ \pi_k \ \cdots \ \pi_N)'$$

Inclusion probabilities

Definition

The joint inclusion probability is the probability that unit k and ℓ are together in the random sample

$$\pi_{k\ell} = \Pr(S_k > 0 \text{ and } S_\ell > 0) = E[r(S_k)r(S_\ell)],$$

with $\pi_{kk} = \pi_k, k \in U$.

Let $\boldsymbol{\Pi} = [\pi_{k\ell}]$ be the matrix of joint inclusion probabilities. Moreover, we define

$$\boldsymbol{\Delta} = \boldsymbol{\Pi} - \boldsymbol{\pi}\boldsymbol{\pi}'.$$

Inclusion probabilities

Result

$$\sum_{k \in U} \pi_k = E \{ n[r(\mathbf{S})] \},$$

and

$$\sum_{k \in U} \Delta_{k\ell} = E \{ n[r(\mathbf{S})] (r(S_\ell) - \pi_\ell) \}, \text{ for all } \ell \in U.$$

Moreover, if $\text{var} \{ n[r(\mathbf{S})] \} = 0$ then

$$\sum_{k \in U} \Delta_{k\ell} = 0, \text{ for all } \ell \in U.$$

Computation of the Inclusion Probabilities

- Auxiliary variables $x_k > 0, k \in U$.
- First, compute the quantities

$$\frac{nx_k}{\sum_{\ell \in U} x_{\ell}}, \quad (1)$$

$k = 1, \dots, N$.

- For units for which these quantities are larger than 1, set $\pi_k = 1$.
Next, the quantities are recalculated using (1) restricted to the remaining units.

Characteristic Function

The characteristic function $\phi(\mathbf{t})$ from \mathbb{R}^N to \mathbb{C} of a random sample \mathbf{S} with sampling design $p(\cdot)$ on \mathcal{Q} is defined by

$$\phi_{\mathbf{S}}(\mathbf{t}) = \sum_{\mathbf{s} \in \mathcal{Q}} e^{i\mathbf{t}'\mathbf{s}} p(\mathbf{s}), \mathbf{t} \in \mathbb{R}^N, \quad (2)$$

where $i = \sqrt{-1}$, and \mathbb{C} is the set of the complex numbers.

$$\phi'(0) = i\boldsymbol{\mu}, \quad \text{and} \quad \phi''(0) = -(\boldsymbol{\Sigma} + \boldsymbol{\mu}\boldsymbol{\mu}').$$

Hansen-Hurwitz Estimator

The Hansen-Hurwitz estimator (see Hansen and Hurwitz, 1943) of Y is defined by

$$\hat{Y}_{HH} = \sum_{k \in U} \frac{S_k y_k}{\mu_k},$$

where $\mu_k = E(S_k)$, $k \in U$.

Result

If $\mu_k > 0$, for all $k \in U$, then \hat{Y}_{HH} is an unbiased estimator of Y .

Horvitz-Thompson Estimator

The Horvitz-Thompson estimator (see Horvitz and Thompson, 1952) is defined by

$$\hat{Y}_{HT} = \sum_{k \in U} \frac{r(S_k)y_k}{\pi_k},$$

where

$$r(S_k) = \begin{cases} 0 & \text{if } S_k = 0 \\ 1 & \text{if } S_k > 0. \end{cases}$$

Population

Sampling Algorithms

Sampling Algorithm

Definition

A sampling algorithm is a procedure allowing the selection of a random sample.

An algorithm must be a shortcut that avoid the combinatory explosion.

Enumerative Algorithms 1

Algorithm Enumerative algorithm

- ① First, construct a list $\{\mathbf{s}_1, \mathbf{s}_2, \dots, \mathbf{s}_j, \dots, \mathbf{s}_J\}$ of all possible samples with their probabilities.
- ② Next, generate a random variable u with a uniform distribution in $[0,1]$.
- ③ Finally, select the sample s_j such that $\sum_{i=1}^{j-1} p(\mathbf{s}_i) \leq u < \sum_{i=1}^j p(\mathbf{s}_i)$.

Enumerative Algorithms 2

Table: Sizes of symmetric supports

Support \mathcal{Q}	card(\mathcal{Q})	$N = 100, n = 10$	$N = 300, n = 30$
\mathcal{R}	∞	—	—
\mathcal{R}_n	$\binom{N+n-1}{n}$	5.1541×10^{13}	3.8254×10^{42}
\mathcal{S}	2^N	1.2677×10^{30}	2.0370×10^{90}
\mathcal{S}_n	$\binom{N}{n}$	1.7310×10^{13}	1.7319×10^{41}

Sequential Algorithms

A sequential procedure is a method that is applied to a list of units sorted according to a particular order denoted $1, \dots, k, \dots, N$.

Definition

A sampling procedure is said to be weakly sequential if at step $k = 1, \dots, N$ of the procedure, the decision concerning the number of times that unit k is in the sample is definitively taken.

Definition

A sampling procedure is said to be strictly sequential if it is weakly sequential and if the decision concerning unit k does not depend on the units that are after k on the list.

Standard Sequential Algorithms

Algorithm Standard sequential procedure

1 Let $p(\mathbf{s})$ be the sampling design and \mathcal{Q} the support. First, define

$$q_1(s_1) = \Pr(S_1 = s_1) = \sum_{\mathbf{s} \in \mathcal{Q} \mid S_1 = s_1} p(\mathbf{s}), s_1 = 0, 1, 2, \dots$$

2 Select the first unit s_1 times according to the distribution $q_1(s_1)$.

3 FOR $k = 2, \dots, N$ DO

1 Compute

$$\begin{aligned} q_k(s_k) &= \Pr(S_k = s_k \mid S_{k-1} = s_{k-1}, \dots, S_1 = s_1) \\ &= \frac{\sum_{\mathbf{s} \in \mathcal{Q} \mid S_k = s_k, S_{k-1} = s_{k-1}, \dots, S_1 = s_1} p(\mathbf{s})}{\sum_{\mathbf{s} \in \mathcal{Q} \mid S_{k-1} = s_{k-1}, \dots, S_1 = s_1} p(\mathbf{s})}, s_k = 0, 1, 2, \dots \end{aligned}$$

2 Select the k th unit s_k times according to the distribution $q_k(s_k)$;

ENDFOR.

Draw by draw Algorithms

The draw by draw algorithms are restricted to designs with fixed sample size. We refer to the following definition.

Definition

A sampling design of fixed sample size n is said to be draw by draw if, at each one of the n steps of the procedure, a unit is definitively selected in the sample.

Standard Draw by Draw Algorithm

Algorithm Standard draw by draw algorithm

- 1 Let $p(\mathbf{s})$ be a sampling design and $\mathcal{Q} \subset \mathcal{R}_n$ the support. First, define $p^{(0)}(\mathbf{s}) = p(\mathbf{s})$ and $\mathcal{Q}(0) = \mathcal{Q}$. Define also $\mathbf{b}(0)$ as the null vector of \mathbb{R}^N .
- 2 FOR $t = 0, \dots, n-1$ DO

- 1 Compute $\nu(t) = \sum_{\mathbf{s} \in \mathcal{Q}(t)} \mathbf{s} p^{(t)}(\mathbf{s})$;
- 2 Select randomly one unit from U with probabilities $q_k(t)$, where

$$q_k(t) = \frac{\nu_k(t)}{\sum_{\ell \in U} \nu_{\ell}(t)} = \frac{\nu_k(t)}{n-t}, k \in U;$$

The selected unit is denoted j ;

- 3 Define $\mathbf{a}_j = (0 \ \cdots \ 0 \ \underbrace{1}_{j\text{th}} \ 0 \ \cdots \ 0)$; Execute $\mathbf{b}(t+1) = \mathbf{b}(t) + \mathbf{a}_j$;
- 4 Define $\mathcal{Q}(t+1) = \{\tilde{\mathbf{s}} = \mathbf{s} - \mathbf{a}_j, \text{ for all } \mathbf{s} \in \mathcal{Q}(t) \text{ such that } s_j > 0\}$;
- 5 Define, for all $\tilde{\mathbf{s}} \in \mathcal{Q}(t+1)$, $p^{(t+1)}(\tilde{\mathbf{s}}) = \frac{s_j p^{(t)}(\mathbf{s})}{\sum_{\mathbf{s} \in \mathcal{Q}(t)} s_j p^{(t)}(\mathbf{s})}$, where $\mathbf{s} = \tilde{\mathbf{s}} + \mathbf{a}_j$;
- 3 The selected sample is $\mathbf{b}(n)$.

Standard Draw by draw Algorithm (without replacement)

Algorithm Standard draw by draw algorithm for sampling without replacement

- 1 Let $p(s)$ be a sampling design and $\mathcal{Q} \in \mathcal{S}$ the support.
- 2 Define $\mathbf{b} = (b_k) = \mathbf{0} \in \mathbb{R}^N$.
- 3 FOR $t = 0, \dots, n - 1$ DO
select a unit from U with probability

$$q_k = \begin{cases} \frac{1}{n-t} \mathbb{E}(S_k | S_i = 1 \text{ for all } i \text{ such that } b_i = 1) & \text{if } b_k = 0 \\ 0 & \text{if } b_k = 1; \end{cases}$$

IF unit j is selected, THEN $b_j = 1$;

Other Algorithms

- Eliminatory algorithms (Chao, Tillé)
- Splitting methods
- Rejective algorithms
- Systematic algorithms
- Others algorithms (Sampford)

Population

Simple Random Sampling

Simple Random Sampling

Definition

A sampling design $p_{\text{SIMPLE}}(\cdot, \theta, \mathcal{Q})$ of parameter $\theta \in \mathbb{R}_+^*$ on a support \mathcal{Q} is said to be simple, if

(i) Its sampling design can be written

$$p_{\text{SIMPLE}}(\mathbf{s}, \theta, \mathcal{Q}) = \frac{\theta^{n(\mathbf{s})} \prod_{k \in U} 1/s_k!}{\sum_{\mathbf{s} \in \mathcal{Q}} \theta^{n(\mathbf{s})} \prod_{k \in U} 1/s_k!}, \quad \text{for all } \mathbf{s} \in \mathcal{Q}.$$

(ii) Its support \mathcal{Q} is symmetric (see Definition 2, page 9).

Simple Random Sampling

- Support \mathcal{S} Bernoulli sampling
- Support \mathcal{S}_n Simple Random Sampling Without Replacement
- Support \mathcal{R} Bernoulli sampling With replacement
- Support \mathcal{R}_n Simple Random Sampling With Replacement

Links between simple designs

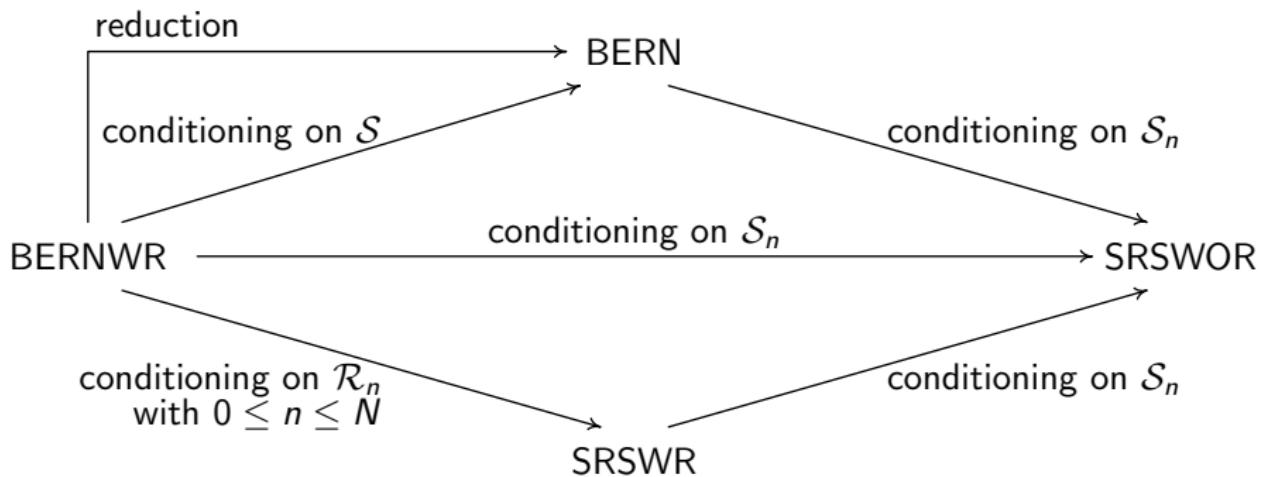


Figure: Links between the main simple sampling designs

Main simple random sampling designs

Notation	BERNWR	SRSWR	BERN	SRSWOR
$p(\mathbf{s})$	$\frac{\mu^{n(\mathbf{s})}}{e^{N\mu}} \prod_{k \in U} \frac{1}{s_k!}$	$\frac{n!}{N^n} \prod_{k \in U} \frac{1}{s_k!}$	$\pi^{n(\mathbf{s})} (1 - \pi)^{N - n(\mathbf{s})}$	$\binom{N}{n}^{-1}$
\mathcal{Q}	\mathcal{R}	\mathcal{R}_n	\mathcal{S}	\mathcal{S}_n
$\phi(\mathbf{t})$	$\exp \left\{ \mu \sum_{k \in U} (e^{it_k} - 1) \right\}$ with repl.	$\left(\frac{1}{N} \sum_{k \in U} e^{it_k} \right)^n$ with repl.	$\prod_{k \in U} \left\{ 1 + \pi (e^{it_k} - 1) \right\}$ without repl.	$\binom{N}{n}^{-1} \sum_{\mathbf{s} \in \mathcal{S}_n} e^{it'_{\mathbf{s}}}$ without repl.
WOR/WR	random	fixed	random	fixed
μ_k	μ	$\frac{n}{N}$	π	$\frac{n}{N}$
π_k	$1 - e^{-\mu}$	$1 - \left(\frac{N-1}{N} \right)^n$	π	$\frac{n}{N}$

Sequential procedure on Bernoulli sampling

Algorithm Bernoulli sampling without replacement

DEFINITION k : INTEGER;
FOR $k = 1, \dots, N$ DO with probability π select unit k ; ENDFOR.

Draw by draw procedure for SRSWOR

Algorithm Draw by draw procedure for SRSWOR

```
DEFINITION j : INTEGER;  
FOR t = 0, ..., n - 1 DO  
    select a unit k from the population with probability  
     $q_k = \begin{cases} \frac{1}{N-t} & \text{if } k \text{ is not already selected} \\ 0 & \text{if } k \text{ is already selected;} \end{cases}$   
ENDFOR.
```

Sequential procedure for SRSWOR

Fan et al. (1962)

Algorithm Selection-rejection procedure for SRSWOR

```
DEFINITION  k,j : INTEGER;
j = 0;
FOR k = 1, ..., N DO
    with probability  $\frac{n-j}{N-(k-1)}$  THEN
        select unit k;
        j = j + 1;
ENDFOR.
```

Draw by Draw Procedure for SRSWR

Algorithm Draw by Draw Procedure for SRSWR

```
DEFINITION  j : INTEGER;  
FOR j = 1, ..., n DO  
    a unit is selected with equal probability 1/N from the population U;  
ENDFOR.
```

Sequential Procedure for SRSWR

Algorithm Sequential procedure for SRSWR

DEFINITION k, j : INTEGER;

$j = 0$;

FOR $k = 1, \dots, N$ DO

select the k th unit s_k times according to the binomial distribution

$$\mathcal{B}\left(n - \sum_{i=1}^{k-1} s_i, \frac{1}{N - k + 1}\right);$$

ENDFOR.

Unequal Probability Sampling

Unequal Probability Sampling

Why the problem is complex? False method

Selection of 2 units with unequal probability

$$p_k = \frac{x_k}{\sum_{\ell \in U} x_{\ell}}, k \in U.$$

The generalization is the following:

- At the first step, select a unit with unequal probability $p_k, k \in U$.
- The selected unit is denoted j .
- The selected unit is removed from U .
- Next we compute

$$p_k^j = \frac{p_k}{1 - p_j}, k \in U \setminus \{j\}.$$

Why the problem is complex? 2

Select again a unit with unequal probabilities $p_k^j, k \in U$, amongst the $N - 1$ remaining units, and so on.

This method is wrong.

We can see it by taking $n = 2$.

Why the problem is complex? 3

In this case,

$$\begin{aligned}
 \Pr(k \in S) &= \Pr(k \text{ be selected at the first step}) \\
 &\quad + \Pr(k \text{ be selected at the second step}) \\
 &= p_k + \sum_{\substack{j \in U \\ j \neq k}} p_j p_k^j \\
 &= p_k \left(1 + \sum_{\substack{j \in U \\ j \neq k}} \frac{p_j}{1 - p_j} \right). \tag{3}
 \end{aligned}$$

We should have $\pi_k = 2p_k$, $k \in U$.

Why the problem is complex? 4

We could use modified values p_k^* for the p_k in such a way that the inclusion probabilities is equal to π_k .

In the case where $n = 2$, we should have p_k^* such that

$$p_k^* \left(1 + \sum_{\substack{j \in U \\ j \neq k}} \frac{p_j^*}{1 - p_j^*} \right) = \pi_k, k \in U.$$

This method is known as the Nairin procedure (see also Horvitz and Thompson, 1952; Yates and Grundy, 1953; Brewer and Hanif, 1983, p.25)

Systematic sampling 1

Madow (1949)

Fixed sample size and exact method.

We have $0 < \pi_k < 1, k \in U$ with

$$\sum_{k \in U} \pi_k = n.$$

Define $V_k = \sum_{\ell=1}^k \pi_\ell$, for all $k \in U$, with $V_0 = 0$. A uniform random number is generated in $[0, 1]$.

- the first unit selected k_1 is such that $V_{k_1-1} \leq u < V_{k_1}$,
- the second unit selected is such that $V_{k_2-1} \leq u + 1 < V_{k_2}$ and
- the j th unit selected is such that $V_{k_j-1} \leq u + j - 1 < V_{k_j}$.

Systematic sampling 2

Example

Suppose that $N = 6$ and $n = 3$.

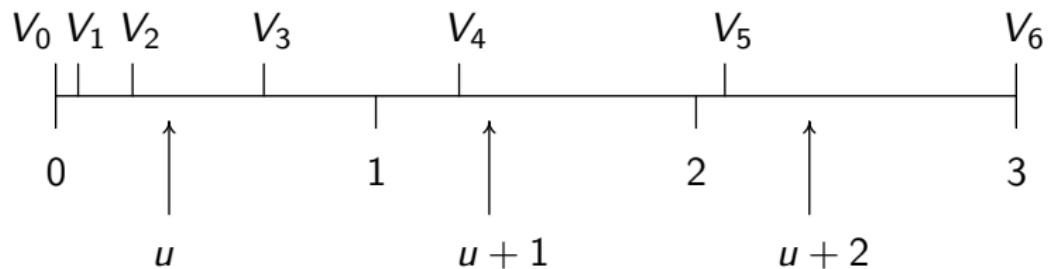
k	0	1	2	3	4	5	6	Total
π_k	0	0.07	0.17	0.41	0.61	0.83	0.91	3
V_k	0	0.07	0.24	0.65	1.26	2.09	3	

Systematic sampling 3

Suppose also that the value taken by the uniform random number is $u = 0.354$. The rules of selections are:

- Because $V_2 \leq u < V_3$, unit 3 is selected;
- Because $V_4 \leq u < V_5$, unit 5 is selected;
- Because $V_5 \leq u < V_6$, unit 6 is selected.

The sample selected is thus $s = (0, 0, 1, 0, 1, 1)$.



Systematic sampling 4

$$\Pi = \begin{pmatrix} 0.07 & 0 & 0 & 0.07 & 0.07 & 0 \\ 0 & 0.17 & 0 & 0.17 & 0.02 & 0.15 \\ 0 & 0 & 0.41 & 0.02 & 0.39 & 0.41 \\ 0.07 & 0.17 & 0.02 & 0.61 & 0.44 & 0.52 \\ 0.07 & 0.02 & 0.39 & 0.44 & 0.83 & 0.74 \\ 0 & 0.15 & 0.41 & 0.52 & 0.74 & 0.91 \end{pmatrix}.$$

Systematic sampling 5

Algorithm Systematic sampling

```
DEFINITION  $a, b, u$  real;  $k$  INTEGER;  
 $u = \mathcal{U}[0, 1[;$   
 $a = -u;$   
FOR  $k = 1, \dots, N$  DO      $b = a;$   
                           $a = a + \pi_k;$   
                          IF  $\lfloor a \rfloor \neq \lfloor b \rfloor$  THEN select  $k$  ENDIF;  
ENDFOR.
```

Systematic sampling 6

Problem: most of the joint inclusion probabilities are equal to zero.
Matrix of the joint inclusion probabilities:

$$\begin{bmatrix} - & 0 & 0.2 & 0.2 & 0 & 0 \\ 0 & - & 0.5 & 0.2 & 0.4 & 0.3 \\ 0.2 & 0.5 & - & 0.3 & 0.4 & 0.2 \\ 0.2 & 0.2 & 0.3 & - & 0 & 0.3 \\ 0 & 0.4 & 0.4 & 0 & - & 0 \\ 0 & 0.3 & 0.2 & 0.3 & 0 & - \end{bmatrix}$$

Systematic sampling 7

- The sampling design depends on the order of the population.
- When the variable of interest depends on the order of the file, the variance is reduced.
- **Random systematic sampling:** The file is sorted randomly before applying random systematic sampling.

Exponential family

Definition

A sampling design $p_{\text{EXP}}(\cdot)$ on a support \mathcal{Q} is said to be exponential if it can be written

$$p_{\text{EXP}}(\mathbf{s}, \boldsymbol{\lambda}, \mathcal{Q}) = g(\mathbf{s}) \exp [\boldsymbol{\lambda}' \mathbf{s} - \alpha(\boldsymbol{\lambda}, \mathcal{Q})],$$

where $\boldsymbol{\lambda} \in \mathbb{R}^N$ is the parameter,

$$g(\mathbf{s}) = \prod_{k \in U} \frac{1}{s_k!},$$

and $\alpha(\boldsymbol{\lambda}, \mathcal{Q})$ is called the normalizing constant and is given by

$$\alpha(\boldsymbol{\lambda}, \mathcal{Q}) = \log \sum_{\mathbf{s} \in \mathcal{Q}} g(\mathbf{s}) \exp \boldsymbol{\lambda}' \mathbf{s}.$$

Expectation

- The expectation

$$\mu(\lambda) = \sum_{s \in \mathcal{Q}} s p_{\text{EXP}}(s, \lambda, \mathcal{Q})$$

- The function $\mu(\lambda)$ is bijective. (fundamental result on exponential families).
- The most important in an exponential family is its parameter and not μ or π .

Main exponential designs

Notation	POISSWR	MULTI	POISSWOR	CPS
$p(\mathbf{s})$	$\prod_{k \in U} \frac{\mu_k^{s_k} e^{-\mu_k}}{s_k!}$	$\frac{n!}{n^n} \prod_{k \in U} \frac{\mu_k^{s_k}}{s_k!}$	$\prod_{k \in U} \left[\pi_k^{s_k} (1 - \pi_k)^{1-s_k} \right]$	$\sum_{\mathbf{s} \in \mathcal{S}_n} \exp[\lambda' \mathbf{s} - \alpha(\lambda, \mathcal{S}_n)]$
\mathcal{Q}	\mathcal{R}	\mathcal{R}_n	\mathcal{S}	\mathcal{S}_n
$\alpha(\lambda, Q)$	$\sum_{k \in U} \exp \lambda_k$	$\log \frac{1}{n!} \left(\sum_{k \in U} \exp \lambda_k \right)^n$	$\log \prod_{k \in U} (1 + \exp \lambda_k)$	difficult
$\phi(\mathbf{t})$	$\exp \sum_{k \in U} \mu_k (e^{it_k} - 1)$	$\left(\frac{1}{n} \sum_{k \in U} \mu_k \exp it_k \right)^n$ with repl.	$\prod_{k \in U} \{1 + \pi_k (\exp it_k - 1)\}$ without repl.	not reducible without repl.
WOR/WR	random	fixed	random	fixed
μ_k	$\mu_k = \exp \lambda_k$	$\mu_k = \frac{n \exp \lambda_k}{\sum_{k \in U} \exp \lambda_k}$	$\pi_k = \frac{\exp \lambda_k}{1 + \exp \lambda_k}$	$\pi_k(\lambda, \mathcal{S}_n)$ difficult
π_k	$1 - e^{-\mu_k}$	$1 - (1 - \mu_k/n)^n$	π_k	$\pi_k(\lambda, \mathcal{S}_n)$

Sequential procedure for multinomial design

Algorithm Sequential procedure for multinomial design

DEFINITION k : INTEGER;

FOR $k = 1, \dots, N$ DO

select the k th unit s_k times according to the binomial distribution

$$\mathcal{B} \left(n - \sum_{\ell=1}^{k-1} s_{\ell}, \frac{\mu_k}{n - \sum_{\ell=1}^{k-1} \mu_{\ell}} \right);$$

ENDFOR.

Draw by draw procedure for multinomial design

Algorithm Draw by draw procedure for multinomial design

```
DEFINITION j : INTEGER;  
FOR j = 1, ..., n DO  
  a unit is selected with probability  $\mu_k/n$  from the population  $U$ ;  
ENDFOR.
```

Sequential procedure for POISSWOR

Algorithm Sequential procedure for POISSWOR

DEFINITION k : INTEGER;

FOR $k = 1, \dots, N$, DO select the k th unit with probability π_k ;
ENDFOR.

Conditional Poisson Sampling (CPS)

- CPS = Exponential design on \mathcal{S}_n (or maximum entropy design)
- Chen et al. (1994) and Deville (2000)

- $p_{\text{CPS}}(\mathbf{s}, \boldsymbol{\lambda}, n) = p_{\text{EXP}}(\mathbf{s}, \boldsymbol{\lambda}, \mathcal{S}_n) = \frac{\exp \boldsymbol{\lambda}' \mathbf{s}}{\sum_{\mathbf{s} \in \mathcal{S}_n} \exp \boldsymbol{\lambda}' \mathbf{s}}$

- The relation between $\boldsymbol{\lambda}$ and $\boldsymbol{\pi}$ is complex, but there exists the recursive relation:

$$\pi_k(\boldsymbol{\lambda}, \mathcal{S}_n) = n \frac{\exp \lambda_k [1 - \pi_k(\boldsymbol{\lambda}, \mathcal{S}_{n-1})]}{\sum_{\ell \in U} \exp \lambda_\ell [1 - \pi_\ell(\boldsymbol{\lambda}, \mathcal{S}_{n-1})]} \quad (\text{with } \pi_\ell(\boldsymbol{\lambda}, \mathcal{S}_0) = 0)$$

- For obtaining $\boldsymbol{\lambda}$ from $\boldsymbol{\pi}$, the Newton method can be used.

Rejective procedure

- For example, select poisson samples until obtaining a fixed sample size. $p_{CPS}(\mathbf{s}, \lambda, n) = p_{EXP}(\mathbf{s}, \lambda, \mathcal{S}_n) = \frac{p_{EXP}(\mathbf{s}, \lambda, \mathcal{S})}{\sum_{\mathbf{s} \in \mathcal{S}_n} p_{EXP}(\mathbf{s}, \lambda, \mathcal{S})}$
 $p_{EXP}(\mathbf{s}, \lambda, \mathcal{S})$ is a Poisson design
 $p_{EXP}(\mathbf{s}, \lambda, \mathcal{S}_n)$ is a conditional Poisson design
- Warning: the use of a rejective procedure changes the inclusion probabilities.
- The parameter of the exponential design remains the same.

Idea of implementations: Rejective procedure

- The π_k of the CPS are given.
- Compute λ from the π_k by the Newton method.
- Compute the inclusion probabilities of the Poisson design

$$\tilde{\pi}_k = \exp(\lambda_k + C) / [1 + \exp(\lambda_k + C)].$$

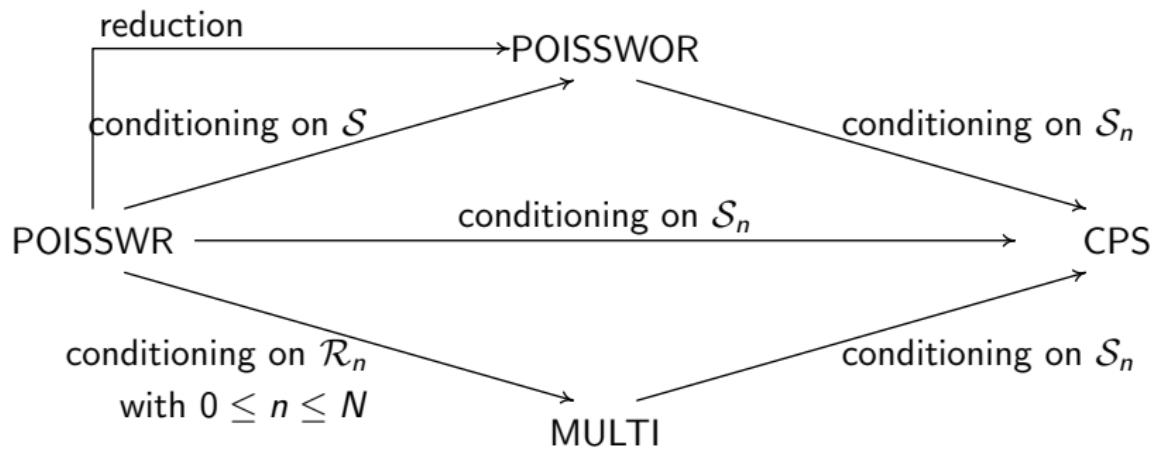
- Select Poisson samples until obtaining the good sample size n .

Implementation of CPS

- Sequential procedure
- Draw by draw procedure
- Poisson rejective procedure
- Multinomial rejective procedure

For all these procedures, λ must first be computed from π . Next, the implementation becomes relatively simple.

Link between the exponential methods



The splitting method

Splitting Method

Basic splitting method

Deville and Tillé (1998)

π_k is split into two parts $\pi_k^{(1)}$ and $\pi_k^{(2)}$ that must satisfy:

$$\pi_k = \lambda \pi_k^{(1)} + (1 - \lambda) \pi_k^{(2)}; \quad (4)$$

$$0 \leq \pi_k^{(1)} \leq 1 \text{ and } 0 \leq \pi_k^{(2)} \leq 1, \quad (5)$$

$$\sum_{k \in U} \pi_k^{(1)} = \sum_{k \in U} \pi_k^{(2)} = n, \quad (6)$$

where λ can be chosen freely provided that $0 < \lambda < 1$. The method consists of drawing n units with unequal probabilities

$$\begin{cases} \pi_k^{(1)}, k \in U, & \text{with a probability } \lambda \\ \pi_k^{(2)}, k \in U, & \text{with a probability } 1 - \lambda. \end{cases}$$

Basic splitting method

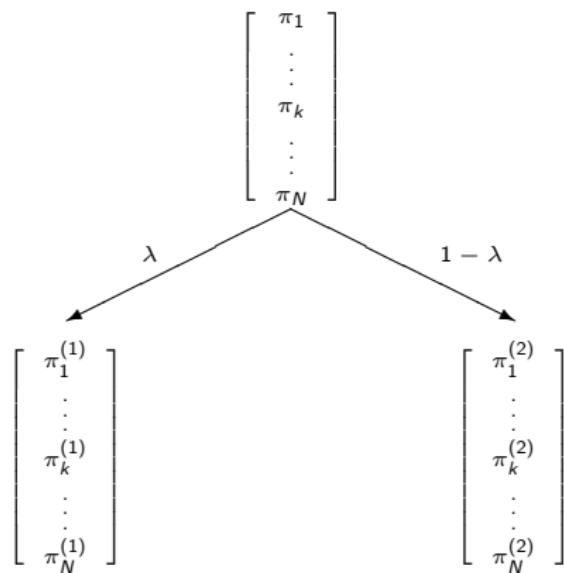


Figure: Splitting into two parts

Splitting method into M parts

Construct the $\pi_k^{(j)}$ and the λ_j in such a way that

$$\sum_{j=1}^M \lambda_j = 1,$$

$$0 \leq \lambda_j \leq 1 \quad (j = 1, \dots, M),$$

$$\sum_{j=1}^M \lambda_j \pi_k^{(j)} = \pi_k,$$

$$0 \leq \pi_k^{(j)} \leq 1 \quad (k \in U, j = 1, \dots, M),$$

$$\sum_{k \in U} \pi_k^{(j)} = n \quad (j = 1, \dots, M).$$

Splitting method into M parts

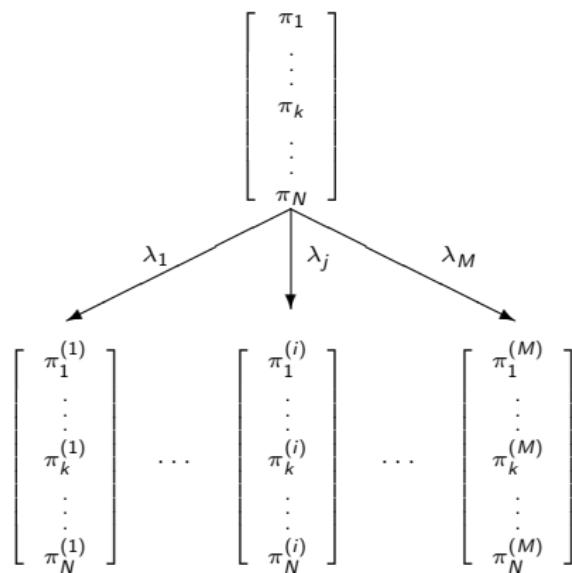


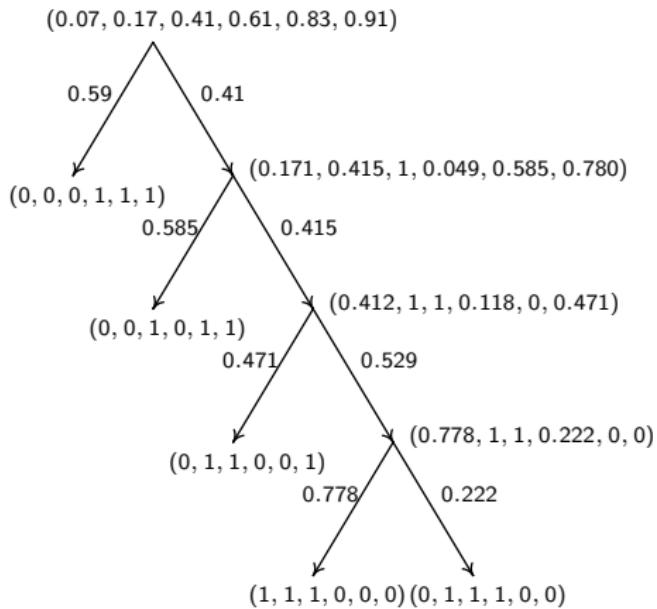
Figure: Splitting into M parts

Minimal Support Design

Denote by $\pi_{(1)}, \dots, \pi_{(k)}, \dots, \pi_{(N)}$ the ordered inclusion probabilities. Next, define

$$\begin{aligned}\lambda &= \min\{1 - \pi_{(N-n)}, \pi_{(N-n+1)}\}, \\ \pi_{(k)}^{(1)} &= \begin{cases} 0 & \text{if } k \leq N - n \\ 1 & \text{if } k > N - n, \end{cases} \\ \pi_{(k)}^{(2)} &= \begin{cases} \frac{\pi_{(k)}}{1 - \lambda} & \text{if } k \leq N - n \\ \frac{\pi_{(k)} - \lambda}{1 - \lambda} & \text{if } k > N - n. \end{cases}\end{aligned}$$

Example: Splitting tree for the minimal support design



Splitting into simple random sampling

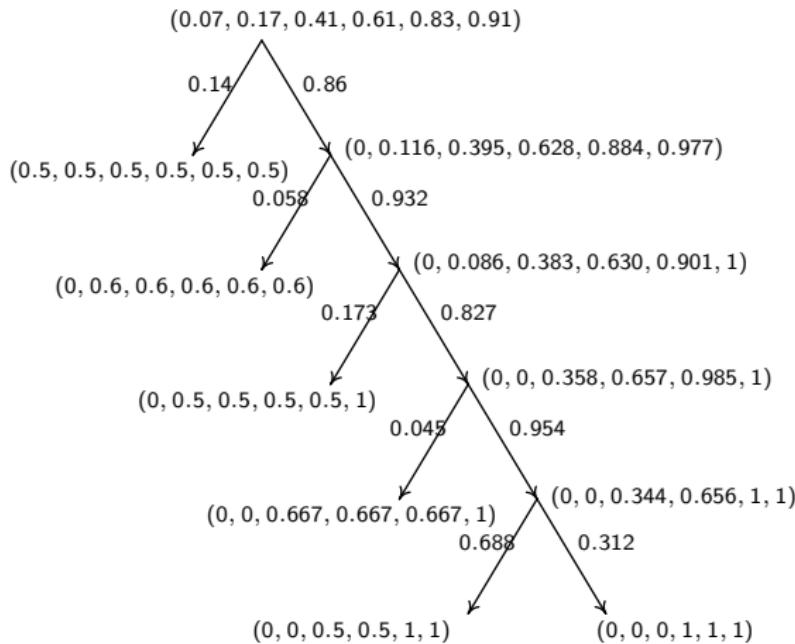
$$\lambda = \min \left\{ \pi_{(1)} \frac{N}{n}, \frac{N}{N-n} (1 - \pi_{(N)}) \right\}, \quad (7)$$

and compute, for $k \in U$,

$$\pi_{(k)}^{(1)} = \frac{n}{N}, \quad \pi_{(k)}^{(2)} = \frac{\pi_k - \lambda \frac{n}{N}}{1 - \lambda}.$$

If $\lambda = \pi_{(1)} N/n$, then $\pi_{(1)}^{(2)} = 0$; if $\lambda = (1 - \pi_{(N)})N/(N - n)$, then $\pi_{(N)}^{(2)} = 1$. At the next step, the problem is thus reduced to a selection of a sample of size $n - 1$ or n from a population of size $N - 1$. In at most $N - 1$ steps, the problem is solved.

Splitting tree for splitting into simple random sampling



Pivotal Method

At each step, only two unit are modified i and j .

Two cases: If $\pi_i + \pi_j > 1$, then

$$\lambda = \frac{1 - \pi_j}{2 - \pi_i - \pi_j},$$

$$\pi_k^{(1)} = \begin{cases} \pi_k & k \in U \setminus \{i, j\} \\ 1 & k = i \\ \pi_i + \pi_j - 1 & k = j, \end{cases}$$

$$\pi_k^{(2)} = \begin{cases} \pi_k & k \in U \setminus \{i, j\} \\ \pi_i + \pi_j - 1 & k = i \\ 1 & k = j. \end{cases}$$

Pivotal Method

If $\pi_i + \pi_j < 1$, then

$$\lambda = \frac{\pi_i}{\pi_i + \pi_j},$$

$$\pi_k^{(1)} = \begin{cases} \pi_k & k \in U \setminus \{i, j\} \\ \pi_i + \pi_j & k = i \\ 0 & k = j, \end{cases} \quad \text{and} \quad \pi_k^{(2)} = \begin{cases} \pi_k & k \in U \setminus \{i, j\} \\ 0 & k = i \\ \pi_i + \pi_j & k = j. \end{cases}$$

Brewer's Method

Brewer and Hanif (1983, p.26)

Brewer (1975)

draw by draw procedure

$$\lambda_j = \left\{ \sum_{z=1}^N \frac{\pi_z(n - \pi_z)}{1 - \pi_z} \right\}^{-1} \frac{\pi_j(n - \pi_j)}{1 - \pi_j}.$$

Next, we compute

$$\pi_k^{(j)} = \begin{cases} \frac{\pi_k(n - 1)}{n - \pi_j} & \text{if } k \neq j \\ 1 & \text{if } k = j. \end{cases}$$

Brewer's Method

The validity derives from the following result:

Theorem

$$\sum_{j=1}^N \lambda_j \pi_k^{(j)} = \pi_k,$$

for all $k = 1, \dots, N$,

References

Brewer, K. R. W. (1975). A simple procedure for π pswor. *Australian Journal of Statistics*, 17:166–172.

Brewer, K. R. W. and Hanif, M. (1983). *Sampling with Unequal Probabilities*. Springer, New York.

Chen, S. X., Dempster, A. P., and Liu, J. S. (1994). Weighted finite population sampling to maximize entropy. *Biometrika*, 81:457–469.

Deville, J.-C. (2000). Note sur l'algorithme de Chen, Dempster et Liu. Technical report, CREST-ENSAI, Rennes.

Deville, J.-C. and Tillé, Y. (1998). Unequal probability sampling without replacement through a splitting method. *Biometrika*, 85:89–101.

Fan, C. T., Muller, M. E., and Rezucha, I. (1962). Development of sampling plans by using sequential (item by item) selection techniques and digital computer. *Journal of the American Statistical Association*, 57:387–402.

Hansen, M. H. and Hurwitz, W. N. (1943). On the theory of sampling from finite populations. *Annals of Mathematical Statistics*, 14:333–362.

Horvitz, D. G. and Thompson, D. J. (1952). A generalization of sampling without replacement from a finite universe. *Journal of the American Statistical Association*, 47:663–685.

Madow, W. G. (1949). On the theory of systematic sampling, II. *Annals of Mathematical Statistics*, 20:333–354.

Tillé, Y. (2006). *Sampling Algorithms*. Springer, New York.

Yates, F. and Grundy, P. M. (1953). Selection without replacement from within strata with probability proportional to size. *Journal of the Royal Statistical Society, B*15:235–261.