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Données spatiales

@ Données spatiales ou géoréférencées : données pour lesquelles une
information géographique est attachée a chaque unité statistique.
L'information géographique est en général la position de I'unité sur
une carte ou dans un référentiel spatio-temporel, et peut par exemple
prendre la forme de latitude et longitude ou de coordonnées UTM.

Christine Thomas-Agnan (TSE) Analyse statistique des données spatiales | 30 octobre 2012 2 /44



Données spatiales

@ Données spatiales ou géoréférencées : données pour lesquelles une
information géographique est attachée a chaque unité statistique.
L'information géographique est en général la position de I'unité sur
une carte ou dans un référentiel spatio-temporel, et peut par exemple
prendre la forme de latitude et longitude ou de coordonnées UTM.

o Nécessité de faire interagir analyse statistique et cartographie
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@ Un traitement statistique de telles données qui ignorerait cet aspect
ou l'intégrerait de facon inadéquate resulterait en une perte
d'information, des erreurs de spécifications, des estimations non
convergentes et non efficaces, des erreurs de prédiction.
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Introduction Chapl : Dimension spatiale

Divers courants

La statistique spatiale rassemble divers courants (géostatistique,
économétrie spatiale, semis de points)

@ données de nature différente
@ problématiques et outils spécifiques

@ mais des points communs
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Domaines d'application

Domaines scientifiques privilégiés d'application de la statistique spatiale
la géologie

la séismologie

la météorologie

I'économie

la géographie

I'épidémiologie

secteur industriel : I'industrie pétroliere

secteur tertiaire : géomarketing
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Introduction Chapl : Dimension spatiale

Domaines d'application

Exemple en prospection pétroliere : prédire la quantité de pétrole
potentielle en un lieu donné en fonction de prélevements effectués en
certains points répartis sur une zone pour optimiser I'emplacement des

forages.
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Exemple en prospection pétroliere : prédire la quantité de pétrole
potentielle en un lieu donné en fonction de prélevements effectués en
certains points répartis sur une zone pour optimiser I'emplacement des
forages.

Exemple en économie urbaine : I'ajustement de modeles hédoniques qui
expliquent le prix d'une transaction en fonction des caractéristiques du
bien immobilier mais aussi des caractéristiques socio-économiques ou
autres de leur lieu d'implantation permet de mieux comprendre ce qui
influence le marché immobilier et de proposer des modeéles pour créer des
indices de prix.
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Domaines d'application

Exemple en environnement : la production de cartes de prédictions de
niveaux de pollution utilise les outils de la géostatistique.
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Introduction Chapl : Dimension spatiale

Domaines d'application

Exemple en environnement : la production de cartes de prédictions de
niveaux de pollution utilise les outils de la géostatistique.

Exemple en hydrologie : la géostatistique permet de distinguer entre les
changements de la qualité de I'eau dus a des sources locales de pollution
et ceux dus a la diversité régionale des propriétés géologiques des nappes
phréatiques.
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Domaines d'application

Exemple en épidémiologie : produire des cartes de niveau de risque lors
d'une épidémie

Christine Thomas-Agnan (TSE) Analyse statistique des données spatiales | 30 octobre 2012 7/ 44



Introduction Chapl : Dimension spatiale

Domaines d'application

Exemple en épidémiologie : produire des cartes de niveau de risque lors
d'une épidémie

Exemple en géomarketing : définir des zones de chalandise, prédire les
flux de clients d'une zone géographige donnée vers un magasin donné.
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Champ aléatoire

Pour une localisation s, une caractéristique Xs est mesurée : on la
considére comme une réalisation X(s,w) d'une variable aléatoire X;. Le
champ aléatoire X(s,w) est I'objet mathématique qui permet de modéliser
ces observations.

L'indice s varie dans une partie D de R?. La dimension d varie de 1 2 3
dans les applications courantes.

On imagine donc que, pour un lieu s donné, il existe un univers de
réalisations possibles (pour chaque w) de la caractéristique Xs mais dans la
réalité on observe généralement une seule réalisation de X; et pour un
nombre fini de sites s. Pluralité de données due a une pluralité de lieux
mais non a une pluralité de réalisations sauf si on est dans le cas
d’'observations répétées.
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Chapl : Liens avec séries temporelles
Séries temporelles et champs aléatoires

Le champ aléatoire pour d = 1 correspond a la série temporelle, alors que
pour d = 2, il correspond au champ spatial. Mais les méthodes de séries
temporelles ne se résument pas a un cas particulier de la statistique
spatiale. Inversement, la statistique spatiale n'est pas une simple
généralisation des séries temporelles.

Elles partagent cependant deux caractéristiques : la dépendance et
['hétérogénéité.

La dépendance :

@ ce qui se passe aujourd'hui est nécéssairement influencé par ce qui
s'est passé hier et dans une moindre mesure par un passé lointain :
c'est le phénomeéne de dépendance temporelle.

@ dépendance spatiale : les variables X5 et X; sont d’autant plus
corrélées que la distance entre s et t est petite. On parle
d’'autocorrélation spatiale.
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Introduction Chapl : Liens avec séries temporelles

Séries temporelles et champs aléatoires

L'hétérogénéité :

@ dans le cas des séries temporelles, I'hypothese de répartitions
marginales identiques est remise en question dans la mesure ou le
phénomeéne peut présenter une évolution en moyenne résultant en une
non stationarité.

@ de méme le champ spatial peut présenter une hétérogénéité spatiale :
la répartition marginale de X varie avec s.

Mais a la différence des séries temporelles, les notions de passé et de futur
n'ont pas leur pendant en spatial et il n'y a pas d'ordre naturel dans R9.
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Chap 1 : Bénéfices prise en compte dimension spatiale
Avantages modélisation spatiale

Quels sont les avantages d'une modélisation adaptée aux données
spatiales?

@ éviter les biais d'estimation des parameétres

@ éviter inefficacité

@ éviter biais de prédiction

e modéliser les effets de débordements (spillovers)
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Introduction Chap 1 : Bénéfices prise en compte dimension spatiale

[llustration : biais et variance d’estimation

Géographie : région Midi-Pyrénées découpée en 283 pseudo-cantons
Voisinage : une unité spatiale est voisine d'une autre si les unités spatiales
partagent une frontiere commune

On simule X selon N (p = 40,0 = 10)

On simule Y selon Y = pWY + X + ¢, ou € est un bruit blanc spatial et
WY désigne le vecteur des moyennes de la variable Y dans le voisinage de
chaque unité spatiale
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Introduction Chap 1 : Bénéfices prise en compte dimension spatiale

[llustration : biais et variance d’estimation

Le biais d'estimation du coefficient 3 est donné par

(X' X)X (I — pW)1X -1

La différence entre variance estimée dans le modéle OLS et le modele LAG
est donnée par (X'X)1X'((1 — pW)' (I — pW))"1X -1
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Chap 1 : Bénéfices prise en compte dimension spatiale
lllustration : hétéroscédasticité

Distribution des éléments de la partie triangulaire supérieure de la matrice
de variance de Y dans ce modele, donnée a facteur d'échelle prés par :

(1= pW)(I = pW))~

il
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Trois grands types

Les grands types de données spatiales sont
@ les données ponctuelles ou de type géostatistique
@ les données surfaciques ou de type économétrie spatiale

@ les données de type semis de points.
Autres types

@ images (pixels)

@ données bilocalisées ou flux
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Chap 2 : Divers types données spatiales
Données ponctuelles ou de type géostatistique

La position observée est déterministe.

La position varie continuement dans |'espace, méme si en pratique on ne
I'observe que de facon discrete en des points non nécéssairement sur grille
réguliere.

Exemples : mesures de pluviométrie en des stations météo, concentration
en polluants en des stations de mesure.
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Chap 2 : Divers types données spatiales
Données surfaciques ou de type économétrie spatiale

La position observée est déterministe mais la donnée géographique est de
nature surfacique. Les données économiques sont souvent diffusées sur des
découpages administratifs d'un territoire.

Exemples : taux de chomage d'une commune, prix moyen des maisons
d'un quartier.
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Données de type semis de points ou processus ponctuels
spatiaux

La position observée est aléatoire et a chaque position peut étre attachée
(ou non) une ou des caractéristiques appelées marques.

Quelques exemples

la disposition de certaines especes végétales dans une forét,

les adresses de patients affectés d'une certaine maladie dans une
région,

la répartition de cellules dans un tissu biologique,

les emplacements des épicentres de secousses sismiques enregistrées,

la localisation de trésors archéologiques retrouvés sur un site
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Chap 2 : Divers types données spatiales
Les logiciels d'analyse spatiale

o Cartographie : les SIG ou Geographic Information System : ARCINFO,
MAPINFO, ARCVIEW (version légere de ARCINFO), SAS/GIS,
GEOCONCEPT, CARTE ET BASE, ASTEROP, GRASS

@ Liens entre GIS et boites a outils statistiques : SAS avec SAS/GIS,
S+, peut étre lié a ARCVIEW et a ARCINFO grace a S+Gislink,
SAGE (Haining, Wise, Ma), avec ARCINFO, SPACESTAT (Anselin,
Bao)(langage GAUSS), avec ARCVIEW, MANET (Unwin, Hofman),
CDV avec TCL/TK (Dykes), XLISP-STAT (Brundson).

e Boite a outils Matlab de spatialeconometrics.com (Le Sage),

o Les packages de R :GeoXp (Toulouse), spdep, geoR, spatstat, etc.
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Coordonnées et projections

Pour dessiner une carte il faut
@ un systeme de coordonnées : des axes et une origine
@ un systeme de projection cartographique

Une projection est une correspondance entre les coordonnées
planimétriques X et Y d'un point, mesurées sur une grille réguliére, et sa
latitude ¢ et longitude A. Au besoin, I'altitude du point est mesurée au
dessus (du géoide ou) du niveau zéro des mers local.
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Latitude et longitude

$=90°

A=0° | A=180°

A=590° A=-180° ASpo?

$=-90°

Latitude : mesure de I'angle ¢ par rapport a I'équateur.
Longitude : mesure de I'angle A par rapport au méridien de référence.
Différentes unités : degrés-minutes-secondes, degres-décimaux, radians,

grades.
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Datum géodésique

La surface réelle de la terre est patatoide ou géoide ; on |'approxime par un
ellipsoide. Exemple : ellipsoide de Clarke.

La donnée de cet ellipsoide et de la projection constitue ce que I'on appelle
un “datum géodésique” ou CRS (coordinate reference system). Les
coordonnées d'un point sont mesurées sur | ellipsoide de révolution de
référence, I'altitude du point est égale a la hauteur au dessus de cet
ellipsoide, ses coordonnées planimétriques sont sa latitude et sa longitude.

50 -40 30 20 <10 O 10 20 30 40 50
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Datum géodésique

Il faut connaitre les datum les plus classiques :
e European Datum (ED) 50 : systéme européen unifié, avec comme
projection courante la projection UTM.
@ World Geodetic System (WGS84) : systéme mondial mis au point par
le Département de la Défense des Etats Unis et utilisé par le GPS,
avec comme projection courante la projection UTM.
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Conversions

Il est courant que |'on récupere des données géoréférencées dans un certain
systeme alors que le fond de carte dont on dispose est codé dans un autre
systeme. Il faut alors recourir a un convertisseur, par exemple Convers.

ttp://vtopo.free.fr/convers.htm
http://vtopo.f fr/ h

ou le package proj4 de R.
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Divers types de projection

La représentation de la surface terrestre sur un plan (la feuille de papier)
nécessite la définition d'une projection. La projection est la méthode de
réduction de la distorsion due a la rotondité de la terre appliquée sur une
surface plate. On distingue plusieurs sortes de projections

@ conique : le sommet du cdne est dans |'axe des pdles et la tangence
avec la terre se fait suivant un paralléle,

@ cylindrique : la tangence avec la terre se fait suivant I'équateur,

@ azimutale : la projection se fait sur un plan tangent en un point ou
sécant en un cercle.

Christine Thomas-Agnan (TSE) Analyse statistique des données spatiales | 30 octobre 2012 25 / 44



Divers types de projection

Les projections les plus courantes sont :

@ la projections de Mercator : projection cylindrique (cylindre tangent a
la terre le long de I'équateur), utilisation limitée a des latitudes
inférieures a 70°.

@ la projection de Mercator Transverse Universelle : projection
cylindrique (cylindre tangent a la terre le long d'un méridien choisi),
limitée a 3° d’amplitude de part et d'autre du méridien d'origine, pour
minimiser les déformations en limite de fuseau. La terre est ainsi
divisée en 60 fuseaux de 6°. Utilisée par le GPS.

@ les projections Lambert : projections coniques (Lambert | et Lambert
| Carto (Nord), Lambert Il et Lambert Il Carto (Centre), Lambert 111
et Lambert Il Carto (Sud), Lambert IV et Lambert IV Carto (Corse),
Lambert Grand Champ, Lambert 93)
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Exemple : Vitoria

Si on utilise les contours de la province d'Alava dans I'ellipsoide du WGS84
et avec la projection Lambert Conformal Conic, et simultanément les
coordonnées de la ville de Votoria dans I'ellipsoide du WGS84 et avec la
projection de Mercator, on obtient

itons Gastaz s not an sarct !

%

4D00D 350000 300000 250000 200000 -150000 -100000

5000000 5050000 $100000 150000 5200000 5250000 §200000

La fonction projdstring du package maptools permet de préciser le CRS.
Le package proj4 permet les conversions d'un systeme a |'autre.
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Chap 1 : Importation de données spatiales dans R
Diverses classes de données spatiales : package sp

La classe (nature) des objets spatiaux en R (réponse a la question 'class’)
dépends de la structure initiale des unités spatiales importées ainsi que de
package utilisé pour les importer.

Avec le package sp, on peut fabriquer des objets de classes suivantes :

@ les SpatialPolygonsDataFrame, si les unités spatiales sont définies
pas des contours, comme des limites territoriales (une commune, un
canton, un pays, un IRIS, etc).

@ les SpatialPointsDataFrame, si les unités spatiales sont définies par
des points comme c'est souvent le cas en géostatistique.

@ les SpatialPixelsDataFrame ou SpatialGridDataFrame, si les unités
spatiales correspondent a des pixels (different entre eux par la fagon
dont les informations sont stockées).

@ les SpatiallinesDataFrame, si les objets sont des segments
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Chap 1 : Importation de données spatiales dans R
Diverses classes de données spatiales : package spatstat

Avec le package spatstat, on peut fabriquer des objets de classes
suivantes :

@ les ppp pour les semis de points (Point Patterns)
@ les owin pour les fenétres

@ les im pour les images pixelisées
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Chap 1 : Importation de données spatiales dans R
Principaux types de formats géographiques

Les objets spatiaux sont créés dans R par importation de fichiers de divers
formats

e format vectoriel : ESRI shapefile (importé avec la fonction
readShapePoly ou readShapeSpatial du package maptools)

o format vectoriel : MAPINFO (importé avec la fonction read0GR du
package rgdal))

e format raster pour les images (importé avec la fonction
readAsciiGrid du package maptools si format Acii initial, ou avec
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Chap 1 : Importation de données spatiales dans R
Format vectoriel : ESRI shapefile

ESRI=Environmental Systems Research Institute
Un ESRI shapefile est formé de :

@ un fichier principal (.shp) qui contient toute I'information liée a la
géométrie des objets décrits qui peuvent étre : des points, des lignes
ou des polygones;

@ un fichier (.shx) qui stocke I'index de la géométrie;

@ un fichier dBASE (.dbf) pour les données attributaires (ou données
statistiques) ;

o des fichiers facultatifs comme un fichier sur les datums/projections
(-pri).
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Chap 1 : Importation de données spatiales dans R
Importation d'un shapefile en SpatialPolygonsDataFrame

Le code ci-dessous importe un fichier shapefile qui contient les contours
géographiques et un certain nombre d’'informations (taux de criminalité,
taux de chémage, etc.) des districts de la ville de Columbus aux
Etats-Unis.

>library(spdep)

>columbus <- readShapePoly(system.file("etc/shapes/columbus.shp",
package="spdep") [1])
>class(columbus)

[1] "SpatialPolygonsDataFrame"
attr(, "package")

[1] "sp"

> dim(columbus)

[1] 49 20

> head(columbus@data)

>plot (columbus)
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Chap 1 : Importation de données spatiales dans R
Les objets de type SpatialPolygonsDataFrame

Pour accéder et connaitre la structure des variables d'intérét d'un objet de
type SpatialPolygonsDataFrame :

str(columbus@data)
Enfin, pour afficher les contours géographiques :

plot (columbus,axes=TRUE)
title("Neighbourhoods in Columbus")
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Chap 1 : Importation de données spatiales dans R
Les objets de type SpatialPolygonsDataFrame

On peut également représenter des couleurs différentes selon une variable
d'intérét. Par exemple, pour représenter les districts du “centre” en rouge
et les districts périphériques en “bleu”, on utilisera le code suivant :

CP<-as.numeric(as.factor(columbus@data$CP))
col.map<-c("royalblue2","red3")
plot(columbus,col=col.map[CP])

legend("topleft", legend = c("0","1"), cex = 0.8,
title = "Core-periphery dummy ",fill=col.map[1:2])
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Chap 1 : Importation de données spatiales dans R
Construction d'un objet de type SpatialPointsDataFrame

Le jeu de données contient des informations sur les prix de I'immobilier
dans les grandes villes de France.

Le code ci dessous construit d'abord un objet de type SpatialPoints qui
contient les coordonnées géographiques des observations :

library(GeoXp)

data(immob)

immob.sp = SpatialPoints(cbind(immob$longitude, immob$latitude))
class (immob. sp)

Ensuite, on associe a cet objet un jeu de caractéristiques des points afin de
construire un objet de type SpatialPointsDataFrame dont la
représentation peut se faire avec la fonction plot :

immob.spdf = SpatialPointsDataFrame(immob.sp, immob)
class (immob.spdf)
plot (immob.spdf)
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Chap 1 : Importation de données spatiales dans R
Construction d'un objet de type SpatialPixelsDataFrame

L'exemple ci-dessous montre un exemple de création et d'affichage d'objet
de type SpatialPixelsDataFrame.

data(meuse.grid)

m = SpatialPixelsDataFrame(points = meuse.grid[c("x", "y")],
data = meuse.grid)

class(m)

plot(m)
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Chap 1 : Importation de données spatiales dans R
Format vectoriel : MAPINFO

Le format MIF/MID est le format d'import-export de Maplnfo, les formats
natifs de Maplnfo étant les formats .DAT/.ID/.MAP /. TAB.

Les données sont réparties dans deux fichiers ASCII : le fichier MID
contient les attributs alphanumériques, a chaque fichier MID étant associé
un fichier MIF. Chaque ligne du fichier MID est associée a un objet
graphique du fichier MIF.
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Chap 1 : Importation de données spatiales dans R
Format vectoriel : MAPINFO

Le fichier MIF contient essentiellement les données graphiques et un
en-téte décrivant les parametres suivants :

@ un numéro de version (A)

le caractere servant de séparateur des attributs alphanumériques (B),
le systéme de coordonnées (C).

le type de projection (C).

les paramétres de transformation des coordonnées (C),

la colonne des attributs qui sert d'index,

le nombre de colonnes des attributs alphanumériques c'est a dire le
nombre de champs définis dans la table (D),

@ le nom des colonnes des attributs ainsi que leur type (caractere,
numérique) et leur longueur (E).
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Chap 1 : Importation de données spatiales dans R
Importation d'un fichier MAPINFO : exemple

>library(rgdal)

> xy <- readOGR("departements_region.mif",
"departements_region")

OGR data source with driver: MapInfo File

Source: "departements_region.mif", layer:

"departements_region"

with 98 features and 7 fields

Feature type: wkbPolygon with 2 dimensions
> class(xy)

[1] "SpatialPolygonsDataFrame"

attr(, "package")

[1] "sp"
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Introduction Chap 1 : Importation de données spatiales dans R

Suite : carte choroplethe de la population

> plotclr <- c("#EFF3FF", "#BDD7E7", "#6BAED6", "#3182BD",
"#08519C")

> breaks<-quantile(xy@data$PSDC,c(0,0.2,0.4,0.6,0.8,1))

> plot(xy,col=plotclr[findInterval (xy@data$PSDC, breaks,
all.inside=TRUE)], border=’grey’)

> legend("topleft", legend = c("[29972,230296.0[",

"[29972,351983.8[", "[351983.8,554093.4[", "[554093.4,966320.0[",
"[966320.0,2554449.0]1"),

title = "Nombre d’habitants",fill=plotclr,cex=0.7)

Christine Thomas-Agnan (TSE) Analyse statistique des données spatiales | 30 octobre 2012 40 / 44



Introduction Chap 1 : Importation de données spatiales dans R

Suite : carte choroplethe de la population

Neombre d'habitants.
[28972,230256.0(
[29972,351983.8]
[351983.8,554093.4
[554093.4,966320.0[
[966320.0,2554449.0}

Christine Thomas-Agnan (TSE) Analyse statistique des données spatiales | 30 octobre 2012 41 / 44



Format raster

Importation d'un fichier au format Ascii .asc avec la fonction
readAsciiGrid du package maptools

> gr <- readAsciiGrid("pvgis_g13year00.asc")
> proj4string(gr)=CRS("+proj=longlat +ellps=WGS84")

> class(gr)

[1] "SpatialGridDataFrame"
attr(, "package")

[1] "sp"

> spplot(gr,axes=TRUE)
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Introduction Chap 1 : Importation de données spatiales dans R

Format raster : exemple ensoleillement en Europe

1800

- 1600

1400

= 1200

1000

r 800

r 600
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Pour aller plus loin

Note : une fois le jeu de données importées dans R, il vaut mieux le sauver
au format .Rdata

save.image(file = "Departements.RData")

Pour aller plus loin sur manipulation d'objets spatiaux en R :

http://geostat-course.org/system/files/monday_slides.pdf
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Types et spécificités des données spatiales Chap 2 : Divers types de données spatiales
Les grands types

Rappelons les trois grands types de données géoréférencées :

@ les données ponctuelles ou de type géostatistique
@ les données surfaciques ou de type économétrie spatiale

@ les données de type semis de points.
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Chap 2 : Divers types de données spatiales
Un exemple de données de type surfacique : Columbus

Le jeu de données économiques de Luc Anselin sur la ville de Columbus
(Ohio, US) en 1980 se trouve dans le package spdep au format .Rdata et
dans le package maptools au format .shp. La ville de Columbus est
découpée en 49 quartiers pour lesquels on dispose de 18 attributs parmi
lesquels nous avons choisi

@ HOVAL valeur immobiliere en $ 1000
@ INC revenu moyen des ménages en $ 1000

@ CRIME nombre de cambriolages et vols de voitures pour 1000
habitants

On va chercher a expliquer la valeur immobiliere par la criminalité dans les
quartiers et le revenu des ménages.
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Types et spécificités des données spatiales Chap 2 : Divers types de données spatiales

Un exemple de données de type surfacique : Columbus

library(classInt)
g5 <- classIntervals(columbus@data$INC , n=4, style="equal")
plot(columbus, col=findColours(q5, c("lightgreen", "darkgreen")))

Left : INC, center : CRIME, right : HOVAL

SR M I
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Types et spécificités des données spatiales Chap 2 : Divers types de données spatiales

Un autre exemple de données de type surfacique : North
Carolina SIDS data

Lire

http://cran.r-project.org/web/packages/spdep/vignettes/sids.pdf

library(spdep)

nc_file <- system.file("etc/shapes/sids.shp", package = "spdep")
11CRS <- CRS("+proj=longlat +datum=NAD27")

nc <- readShapeSpatial(nc_file, ID = "FIPSNO", proj4string = 11CRS)

I'objet 'nc’ contient les variables ainsi que les polygones.
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Types et spécificités des données spatiales Chap 2 : Divers types de données spatiales

Un autre exemple de données de type surfacique : North
Carolina SIDS data

Le jeu de données est au sujet du 'Suden Infant Death Syndrome’ : mort
subite du nourrisson. Nous retenons les attributs suivants, pour chaque
conté de Caroline du nord :

BIR74 births, 1974-78

SID74 SID deaths, 1974-78

NWBIR74 non-white births, 1974-78
BIR79 births, 1979-84

SID79 SID deaths, 1979-84

NWBIR79 non-white births, 1979-84
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Types et spécificités des données spatiales Chap 2 : Divers types de données spatiales

Un autre exemple de données de type surfacique : North

Carolina SIDS data

30

Frequency

Histogram of nc@data$BIR74

b

T T 1
0 5000 10000 15000 20000

ne@datasBIR74

Frequency

Histogram of nc@data$SID74

ne@data$sin7a
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Chap 2 : Divers types de données spatiales
Un exemple de données de type géostatistique : Baltimore

Le jeu de données Baltimore se trouve dans le package spdep au format
.Rdata. Il contient les caractéristiques de 211 transactions immobilieres sur
des maisons dans la ville de Baltimore (Maryland) en 1978. Nous avons
choisi de conserver les attributs suivants
@ PRICE le prix de la maison
NROOM le nombre de pieces
NBATH le nombre de salles de bain
PATIO : 1 si patio, 0 sinon
FIREPL : 1 si cheminée, 0 sinon
AC : 1 si climatisation, 0 sinon
BMENT : 1 si cave, 0 sinon
NSTOR : nombre d'étages
AGE : age du batiment
LOTSZ : surface du terrain (en centaine de pieds carrés)

e SQFT : surface de I'intérieur (en centaine de pieds carrés)
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Types et spécificités des données spatiales Chap 2 : Divers types de données spatiales

Un exemple de données de type géostatistique : Baltimore

480 500 520 540 560 580 600

L e T T T T
850 830 900 920 940 %0 %80 0 50 100 150

T
150

T
100
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Types et spécificités des données spatiales Chap 2 : Divers types de données spatiales

Un exemple de semis de points : Pompiers de Toulouse

Cette base provient du SDIS 31 (Service Départmental d’'Incendie et de
Secours). Elle contient les localisations et caractéristiques d'un échantillon
de sinistres durant le mois de janvier de I'année 2004 sur une zone autour
de la ville de Toulouse. La variable M contient la durée du sinistre en

“minutes sur le lieu du sinistre” multipliée par le nombre de pompiers
mobilisés.
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Types et spécificités des données spatiales Chap 2 : Divers types de données spatiales

Un exemple de semis de points : Pompiers de Toulouse

library(spatstat)

load("Pompiers_janvier+region.Rdata")
PP=ppp(sinistres_janvier$X,sinistres_janvier$Y,window=Region)
marks (PP)<-sinistres_janvier$M

plot(PP,main="Sinistres avec durée ")

PPu=unmark (PP)

plot(PPu,main="Sinistres dans Region de Toulouse",cex=0.4)

Sinistres dans Region de Toulouse Sinistres avec durée
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Chap 3 : Modélisation des données ponctuelles ou surfaciques Modélisation
Notations

Une seule notation commune pour données ponctuelles ou surfaciques :
champ X observé en des localisations sy, --- , s,

@ si données ponctuelles : Xs désigne la variable aléatoire de la
caractéristique X au point s

@ si données surfaciques, Xs désigne la variable aléatoire de la
caractéristique X dans |'unité spatiale dont le représentant est s

La loi du champ X; est caractérisée par
@ les lois marginales de X5 pour chaque localisation s

@ les lois conjointes de vecteurs Xs,--- , Xs, pour un ensemble fini de
localisations s1, - - -, sp
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Chap 3 : Modélisation des données ponctuelles ou surfaciques Modélisation
’ 5
Nombre d'observations

On observe généralement une seule réalisation de X, et ce pour un nombre
fini de sites s sauf si on est dans le cas d'observations répétées : plusieurs
données mais une seule réalisation!!

Solution : puiser des forces dans la continuité spatiale du phénomene et
dans la corrélation entre lieux voisins pour rendre cette inférence possible.
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Chap 3 : Modélisation des données ponctuelles ou surfaciques Modélisation
/s 0.0 5
Décomposition classique

Xs champ aléatoire a valeurs réelles admettant un moment d’ordre un
fini : E(Xs) < o0.
Décomposition classique en deux parties

Xs = E(Xs) + (Xs - IE(Xs))

Le terme déterministe E(X) s'appelle la tendance et modélise les
variations a grande échelle du phénomene décrit par ce champ. Le terme
aléatoire (Xs — E(Xs)) s'appelle la fluctuation et modélise les variations
du champ a petite échelle. Notons que la fluctuation a une moyenne nulle.
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Chap 3 : Modélisation des données ponctuelles ou surfaciques Modélisation

Part d'arbitraire dans la décomposition

Dans la pratique, cette décomposition en deux termes pour un phénomeéne
observé une fois n'est pas unique et c'est le choix du modélisateur
d’affecter certains aspects a la partie aléatoire ou a la partie déterministe :
une coupe transversale ne permet pas de distinguer entre hétérogénéité et
autocorrélation.
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Chap 3 : Modélisation des données ponctuelles ou surfaciques Modélisation
/s 0.0 5
Décomposition classique

On dit qu'il y a une tendance lorsque E(X;) est non constante dans
I'espace : on dit aussi que la moyenne est non stationnaire.

Pour comprendre ce découpage, il est bon de penser a une montagne : le
détail de la variation de I'élévation mesuré avec précision constitue le
champ; on peut penser a |'allure de la montagne vue d'avion telle qu'elle
se découpe sur I'horizon comme a une tendance; la différence entre
I'élévation précise et cette tendance représente alors les accidents de
terrain visibles de pres.
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Chap 3 : Modélisation des données ponctuelles ou surfaciques Modélisation
lllustration

Champ (droite), tendance (centre) et fluctuation (gauche)

M g‘}%’m\‘ﬁ

R
e 2 oo Ry m‘w

\\
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Chap 3 : Modélisation des données ponctuelles ou surfaciques Hétérogénéité
s, 7 7 Ve 7 Ly S
Hétérogénéité : définition

La répartition marginale du champ aléatoire X, varie avec la localisation s.
On dit qu'il y a une tendance lorsque E(X;) est non constante dans
I'espace (moyenne non stationnaire).

L'hétérogénéité spatiale sera prise en compte par |'usage de variables
explicatives pour modéliser la tendance. Certaines de ces variables peuvent
étre spatiales de nature comme, par exemple, la distance a certains lieux
d’intérét pour le probleme.

Il n'est pas suffisant de prendre en compte ces variables dans la moyenne
pour évacuer totalement la structure spatiale du probleme qui peut rester
présente a |'ordre deux.
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Chap 3 : Modélisation des données ponctuelles ou surfaciques Autocorrélation

Autocorrélation : intuition

Everything is related to everything else but closer things more so.
Si la tendance est spécifique au moment d'ordre un d'un champ,
I"autocorrélation concerne le moment d'ordre deux que I'on supposera
exister dans ce paragraphe : on dit alors que le champ est du second

ordre.
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Chap 3 : Modélisation des données ponctuelles ou surfaciques Autocorrélation

Autocorrélation : intuition

Everything is related to everything else but closer things more so.

Si la tendance est spécifique au moment d'ordre un d'un champ,
I"autocorrélation concerne le moment d'ordre deux que I'on supposera
exister dans ce paragraphe : on dit alors que le champ est du second
ordre. Pour les données spatiales, une corrélation peut se produire entre
Xs et X; du fait de leur proximité géographique.

De facon qualitative, on parle d'autocorrélation spatiale positive pour une
variable lorsqu'il y a regroupement géographique de valeurs similaires de la
variable.
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Chap 3 : Modélisation des données ponctuelles ou surfaciques Autocorrélation
/ 5 o 0.0
Autocorrélation : intuition

Everything is related to everything else but closer things more so.

Si la tendance est spécifique au moment d'ordre un d'un champ,
I"autocorrélation concerne le moment d'ordre deux que I'on supposera
exister dans ce paragraphe : on dit alors que le champ est du second
ordre. Pour les données spatiales, une corrélation peut se produire entre
Xs et X; du fait de leur proximité géographique.

De facon qualitative, on parle d'autocorrélation spatiale positive pour une
variable lorsqu'il y a regroupement géographique de valeurs similaires de la
variable. De méme, on parle d’autocorrélation spatiale négative pour une
variable lorsqu'il y a regroupement géographique de valeurs dissemblables
de la variable.
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Chap 3 : Modélisation des données ponctuelles ou surfaciques Autocorrélation

Autocorrélation : intuition

Everything is related to everything else but closer things more so.

Si la tendance est spécifique au moment d'ordre un d'un champ,
I"autocorrélation concerne le moment d'ordre deux que I'on supposera
exister dans ce paragraphe : on dit alors que le champ est du second
ordre. Pour les données spatiales, une corrélation peut se produire entre
Xs et X; du fait de leur proximité géographique.

De facon qualitative, on parle d'autocorrélation spatiale positive pour une
variable lorsqu'il y a regroupement géographique de valeurs similaires de la
variable. De méme, on parle d’autocorrélation spatiale négative pour une
variable lorsqu'il y a regroupement géographique de valeurs dissemblables
de la variable. Enfin, on parle d’absence d’autocorrélation pour une
variable lorsqu'il n'y a pas de relation entre la proximité géographique et le
degré de ressemblance des valeurs de la variable.
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Chap 3 : Modélisation des données ponctuelles ou surfaciques Autocorrélation

Autocovariance : lllustration

Prenons pour illustrer cette notion I'exemple d'un champ dichotomique a
valeurs 0 ou 1 représentées respectivement par les couleurs blanche et
noire et constant sur les carrés d'une grille réguliere.

Al 55
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Modélisation de |'autocorrélation

Deux approches selon le type
@ pour des données de type géostatistique, I'autocorrélation se modélise
par la fonction d'autocovariance ou le variogramme,

@ pour les données de type latticiel il se modélise par I'intermédiaire des
matrices de voisinage et se mesure par les indices de Moran et
Geary
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Chap 3 : Modélisation des données ponctuelles ou surfaciques Autocorrélation
- - . yé
Notions de stationnarité

La structure de covariance d'un champ du second ordre est définie par la
fonction d'autocovariance

I?(S7 t) = COV(XS, Xt)

Pour modéliser un tel champ, une des hypotheses simplificatrices que 1'on
est souvent amené a faire sur sa structure de covariance est celle de la
stationnarité.

La stationnarité stricte ou forte d'un champ suppose que la loi du

vecteur Xy, ..., Xs, est invariante par translation quel que soit le nombre
de points k et quelles que soient leurs positions s1,...s; i.e. Xg,...,Xs, a
méme loi que Xs,p, ..., Xs,+h quel que soit h € RY.
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Caractérisation mathématique des fonctions
d’'autocovariance

Les fonctions d'autocovariance peuvent étre caractérisées par la propriété
mathématique suivante :

Une fonction R(s, t) de R? A valeurs dans R est une fonction
d'autocovariance d'un champ aléatoire réel du second ordre si et seulement
si elle est de type positif c'est a dire que quels que soit |'entier k, quels
que soient les k sites s1, ..., sk et les réels a1,...,ak, on a

k k
Z Z a;ajR(s,-, Sj) > 0.

i=1 j=1
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Chap 3 : Modélisation des données ponctuelles ou surfaciques Autocorrélation
- - . yé
Notions de stationnarité

Un champ aléatoire Xs a valeurs réelles du second ordre est dit
stationnaire au second ordre ou au sens faible s'il existe un vecteur
1t € R et une fonction

R : RY — R dite fonction d'autocovariance tels que

E(X) = (1)
Cov(Xs, Xssp) = R(h) (2)

Notons que dans ce cas, la fonction d'autocovariance est une fonction
d’une variable au lieu de deux. Il est clair que la stationnarité forte
implique la stationnarité faible. Dans le cas gaussien, ces deux notions sont
équivalentes puisque les moments d'ordre un et deux déterminent la
distribution.
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Caractérisation mathématique des fonctions
d’'autocovariance stationnaires

Une fonction R(s) de R a valeurs dans R est une fonction d'autocovariance
d'un champ aléatoire réel stationnaire du second ordre si et seulement si
elle est de type positif ce qui signifie dans ce cas que la fonction de deux
variables (s, t) — R(s — t) est de type positif. Notons que le vocabulaire
“de type positif” est le méme mais qu'il s'applique dans un cas a une
fonction de deux variables et dans I'autre a une fonction d’une variable.

25 / 34
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Chap 3 : Modélisation des données ponctuelles ou surfaciques Autocorrélation

Stationnarité intrinseque

La stationnarité est souvent une hypothése trop forte dans les applications
et une facon de I'affaiblir est de considérer la stationnarité intrinseéque.
On n'exige pas I'existence d'un moment d'ordre un pour le champ
lui-méme mais seulement pour les accroissements du champ et I'on

demande que

E(Xsih— Xs) =0
Var(Xepn — Xs) = 279(h) = E(Xswp — Xs)?

La fonction  s'appelle alors le semi-variogramme et 2+ le variogramme.
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Stationnarité et stationnarité intrinseque

Dans le cas ou le champ est stationnaire (donc nécessairement
intrinséquement stationnaire), il existe la relation suivante entre
variogramme et fonction d'autocovariance

Var(Xsth — Xs) = Var(Xsin) + Var(Xs) — 2Cov(Xs, Xstn)

= 202 —2R(h)
= 2v(h)
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Caractérisation mathématique des fonctions variogramme

Une fonction 7(t) de R vers R est le variogramme d'un champ aléatoire
intrinsequement stationnaire si et seulement si —y est conditionellement
de type positif d'ordre 1 i.e. pour tout entier k, pour tout ensemble de k

sites s1, ..., Sk et tout choix de réels a1,...,ax, on a
k k
=3 > aia(si—s) =0,
i=1 j=1

N . - k
deés que ay, . .., a, satisfont la condition ) ; a; = 0.
On parle alors d’'un variogramme valide.
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Chap 3 : Modélisation des données ponctuelles ou surfaciques Autocorrélation
N o d ’e 5
otion d'isotropie

Un champ intrinsequement stationnaire est isotrope si son variogramme
~(h) ne dépend que de la norme de h. Dans ce cas la fonction

|| bl E(Xsyn — Xs)® = v0(]| h||) est appellée variogramme
omnidirectionnel isotrope.

On parle d’anisotropie lorsque |'hypothese

d'isotropie n'est pas vérifiée. On peut alors représenter une fonction
variogramme univariée pour chaque direction : variogramme directionnel.
Si les lignes de niveau du variogramme sont des ellipses, on dit qu'il y a
anisotropie géométrique. On peut alors se ramener a une configuration
d'isotropie par une rotation composée par une affinité (A). Alors

v(h) = ([l Ah ).
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Chap 3 : Modélisation des données ponctuelles ou surfaciques Autocorrélation
lllustration isotropie

Variogram directionnel lissé pour la variable PRICE dans le jeu de données
Baltimore : a gauche angle 7/2 et a droite angle /4
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Chap 3 : Modélisation des semis de points

Homogénéité d'un semis de points

La notion d’homogénéité est une notion d'ordre un

: il s'agit de savoir si le

nombre moyen de points par unité de surface est constant au travers du
domaine. On parle aussi de facon équivalente de stationnarité.

et o
« ° : n.. L4 . °
. - o °
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Chap 3 : Modélisation des semis de points

Interaction dans un semis de points

La notion d'interaction est une notion d'ordre deux : il s’agit de savoir si le
nombre (aléatoire) de points N(A) dans une partie de I'espace A est
dépendant ou indépendant (de facon probabiliste) du nombre de points
N(B) dans une autre partie B disjointe de A. Les phénomenes qui
présentent de I'attraction ou de la répulsion entre les points comportent
une dépendance entre N(A) et N(B).

Par exemple

@ les positions d'animaux sur un territoire présentent de la répulsion en
raison de la compétition pour la nourriture

@ les positions de personnes atteintes d'une maladie épidémique vont au
contraire montrer de I'attraction en raison de la contagion
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Chap 3 : Modélisation des semis de points

Interaction dans un semis de points : exemples

Gauche : régulier, Centre : Homogene, Droite : Agrégé

cells redwood
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Chap 3 : Modélisation des semis de points

Isotropie dans un semis de points

On dit qu'un semis de points est isotrope lorsque toutes ses
caractéristiques sont invariantes par rotation. Un exemple non isotrope

Christine Thomas-Agnan (TSE) Analyse statistique des données spatiales Il

30 octobre 2012
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Les packages de R

@ pour les données surfaciques : le package “spdep” par R. Bivand

@ pour les données ponctuelles : les packages “gstat”, “geoR" et
“geoRglm”

@ pour les semis de points : le package “SpatStat” de A. Baddeley et R.
Turner
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Chap 4 : Outils statistiques pour données spatiales Outils pour données ponctuelles

Variogramme isotrope : effet de pépite

Effet de pépite : remarquons que (0) = 0. On dit que le processus est

continu en moyenne quadratique si lim,_,0~(h) = 0.
Cette condition équivaut a la continuité de la fonction d’'autocovariance.

Si limp—0v(h) = co # 0 alors ¢y est appellé effet pépite (nugget effect)
et témoigne d'une discontinuité dans le processus.
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Chap 4 : Ouitils statistiques pour données spatiales Outils pour données ponctuelles

Variogramme isotrope : seuil et portée

Seuil : Si X; est stationnaire et si R(h) — 0 quand h — +o0 alors y(h)
tends vers R(0) appellé seuil (sill) du semi-variogramme.

Portée : la plus petite valeur de || r || telle que v(r(1 + €)) = R(0) quel
que soit € > 0 est appellée la portée (range) dans la direction r.

Portée pratique : la plus petite valeur de || r || telle que y(r) = 0.95R(0)
est appellée la portée pratique dans la direction r.
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Chap 4 : Outils statistiques pour données spatiales Outils pour données ponctuelles
5 o Je
lllustration : seuil et portée

MODELE SPHERIQUE

1.0

0.8

(semi-)variogramme
0.4
L

0.2
I

0.0

distance
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Exemples de variogrammes isotropes : exponentiel sans

effet de pépite

(semi-)variogramme
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Chap 4 : Outils statistiques pour données spatiales Outils pour données ponctuelles

Exemples de variogrammes isotropes :

effet de pépite

(semi-)variogramme

00 02 04 06 08 1.0

exponentiel avec

\«‘ ~0“’1

i
'\v ,, ;,'/) ‘ !’
iy
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Chap 4 : Ouitils statistiques pour données spatiales Outils pour données ponctuelles

Nuage de variogramme

Soit X un champ centré intrinsequement stationnaire.

o Cas isotrope : omnidirectionnel
Soit hj; la distance entre deux unités géographiques s; et s;. Le
“Nuage de variogramme” est le nuage de points d'abscisse hj; et
d’ordonnée 3(Xs, — X;;)2.

Dans le “Nuage de variogramme” normalisé, les ordonnées sont
(Xs;—Xs;)?
67 ou (jj est la moyenne des (X, — ij)2 pour les couples

dlstants de hj.

@ Cas non isotrope : directionnel
un graphique pour chaque direction e : les points d'abscisse h ont
pour ordonnées %(XsiJrhe — X5;)? chaque fois qu'il existe un j tel que
si + he = s;.
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Nuage de variogramme : exemple isotrope

Données Baltimore, nuage de variogramme omnidirectionnel.

semivariance

2000 4000 6000 8000 10000
I

0
L

T T T T T T T
0 20 40 60 80 100 120

Distance
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Chap 4 : Outils statistiques pour données spatiales Outils pour données ponctuelles

Nuage de variogramme : exemple non isotrope

Données Baltimore, nuage de variogramme unidirectionnel, direction 7/2.
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Chap 4 : Ouitils statistiques pour données spatiales Matrices de poids
Matrices de poids

La matrice de poids est la version spatiale de |'opérateur retard en séries
temporelles.

Pour n sites géographiques, une matrice de poids W est de taille n X n et
son élément wj; indique I'intensité de la proximité entre la zone i et la zone
J (elle spécifie la topologie du domaine).

Par convention w;; = 0.

W n'est pas nécéssairement symétrique. Si W quelconque, (W + W’)/2
est symétrique.
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Matrices de poids : normalisation

On dit qu'une matrice de poids est normalisée si

n
Z W,'j =1.
Jj=1

Utilité : cette contrainte permet de rendre les parametres spatiaux
comparables entre divers modeles ; cette contrainte a une conséquence sur
le vecteur spatialement décalé (voir plus loin).

On peut normaliser une matrice W en W* en divisant chaque ligne par
son total.

Attention : si W est symétrique, sa normalisée W™ n’est plus symétrique.
Attention : si W est normalisée, sa symétrisée (W + W')/2 n'est plus
normalisée
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Variable spatialement décalée

Si X est une variable et W une matrice de poids, la variable spatialement
décalée associée a X est WX.
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Variable spatialement décalée

Si X est une variable et W une matrice de poids, la variable spatialement
décalée associée a X est WX.

Si W est binaire, le terme i de WX est la somme des valeurs de X
associées aux voisins du site /.
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Variable spatialement décalée

Si X est une variable et W une matrice de poids, la variable spatialement
décalée associée a X est WX.

Si W est binaire, le terme i de WX est la somme des valeurs de X
associées aux voisins du site /.

Si W est normalisée, le terme i de WX est la moyenne (pondérée par la
proximité) des valeurs de X sur les voisins du site /.

Noter que méme si X ne présente pas d'autocorrélation spatiale, WX va
en présenter.
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Chap 4 : Outils statistiques pour données spatiales Matrices de poids
Petit exemple
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Chap 4 : Outils statistiques pour données spatiales Matrices de poids
Petit exemple

112183 Siz=(89101 2)7,
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Chap 4 : Outils statistiques pour données spatiales Matrices de poids
Petit exemple

8 1 910 Siz=(89101 2)7,
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Chap 4 : Outils statistiques pour données spatiales Matrices de poids
Petit exemple

819110 Siz=(891012)7,z=(6666 6)"

Christine Thomas-Agnan (TSE) Analyse statistique des données spatiales 111 31 octobre 2012 14 / 82



Chap 4 : Outils statistiques pour données spatiales Matrices de poids
Petit exemple

21314 Siz=(891012)7,z=(6666 6)"

z-2=(234-5-4)T

-4
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Chap 4 : Outils statistiques pour données spatiales Matrices de poids
Petit exemple

21314 Siz=(891012)7,z=(6666 6)"
5
z-2=(234-5-4)T
-4
W x (z-2)
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Chap 4 : Outils statistiques pour données spatiales Matrices de poids
Petit exemple

21314 Siz=(891012)7,z=(6666 6)"

5

z-2=(234-5-4)T
-4

0 1 0 0 0 2

1/3 0 1/3 1/3 0 3

Wx((z-2)=| 0o 1 0 0 0 |x 4

0 12 0 0 1/2 -5

0 0 0 1 0 —4
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Chap 4 : Outils statistiques pour données spatiales Matrices de poids
Petit exemple

21314 Siz=(891012)7,z=(6666 6)"

-5
z-2=(234-5-4)T

-4

0 1 0 0 0 2 3

1/3 0 1/3 1/3 0 3 1/3

Wx((z-2)=| 0o 1 0 0 0 |x 4 | = 3

0 12 0 0 1/2 -5 ~1/2

0 0 0 1 0 —4 -5
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Chap 4 : Outils statistiques pour données spatiales Matrices de poids

Formats des matrices de poids sous R

Le type 'matrix’ n'est pas optimal pour stocker une matrice de voisinage
(ce sont plutdt des matrices creuses). Par exemple, pour les données SIDS

class(nc)

Le package spdep utilise plusieurs classes (types) de fichiers pour cela
@ la classe 'nb’

@ la classe 'listw’
@ la classe 'knn’

Il existe des fonctions de conversion d'un type a l'autre : 'knn2nb’,
'mat2listw’,’'listw2mat’, 'nb2listw’,'nb2mat’.
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Chap 4 : Ouitils statistiques pour données spatiales Matrices de poids
La classe nb

La fonction "poly2nb’ permet de construire une matrice de voisinage basé
sur le principe suivant : les unités i et j sont voisines si elles partagent une
frontiere commune. Avec les données sids :

wc.nb=poly2nb(nc)

class(wc.nb)

is.symmetric.nb(wc.nb)

str(wc.nb)

plot(nc, border=’grey’,xlim=c(-84.5,-82),ylim=c(35,36),
axes=TRUE)

coord=coordinates(nc)

plot (wc.nb, coord,add=TRUE)
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Chap 4 : Outils statistiques pour données spatiales Matrices de poids
La classe nb

Voisinage basé sur les frontieres communes pour les données SIDS

35.5°N 36°N
1

35°N

T T T T T T
84.5°W 84°W 83.5°W 83°W 82.5°W 82°W
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Chap 4 : Ouitils statistiques pour données spatiales Matrices de poids

Matrices de contiguité

Plus généralement les matrices de contiguité sont basées sur le partage
d'une frontiére ou d'un sommet de polygone

1 2 3
4 0 5
6 7 8

- "rook” : au moins une frontiere commune

0 voisinde 2,7, 4,5

- “bishop” : au moins un sommet commun

O voisinde 1, 3,6, 8

- “queen” : au moins une frontiére ou un sommet commun

O voisinde1,2,3,4,5,6,7,8

Dans spdep, les fonctions 'queencell’ et 'rookcell’ permettent de construire
certaines de ces matrices pour des unités disposées sur une grille.
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Chap 4 : Outils statistiques pour données spatiales Matrices de poids

Matrices basées sur un seuil de distance

- wii = 1(d(sj, 5;) < seuil)
L _c
- WU —

d(s,',SJ')O‘

- wjj = exp(—ad(sj, sj))

remarque : dans certains cas, d(s;,sj) peut étre autre chose que la
distance géographique, par exemple d(s;, s;) =| x; — x; |, ou x; désigne une
caractéristique socio-économique pertinente.
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Matrices basées sur un seuil de distance

Pour les données SIDS, voici la contruction d'une matrice basée sur un
seuil de 75km, I'option LONGLAT=TRUE permet d'utiliser une distance
kilométrique alors que les coordonnées sont exprimées en degrés.

wd.nb=dnearneigh(coord,0,75,longlat=TRUE)

class(wd.nb)

plot(nc, border=’grey’,xlim=c(-84.5,-82),ylim=c(35,36),
axes=TRUE)

coord=coordinates(nc)

plot(wd.nb,coord,add=TRUE)
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Matrices basées sur un seuil de distance

Voisinage basé sur un seuil de distance de 75km pour les données SIDS

84.5°W 84°W 83.5°W 83°W 82.5°W 82°W
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Chap 4 : Outils statistiques pour données spatiales Matrices de poids

Matrices basées sur un seuil de distance

Exemple de code pour construire une matrice basée sur I'inverse de la
distance

wd.nb.2=dnearneigh(coord,0,1000,longlat=TRUE)
dlist <- nbdists(wd.nb.2, coord)

dlist <- lapply(dlist, function(x) 1/x)
wd.list<-nb2listw(wd.nb.2, glist=dlist)
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Matrices basées sur un nombre de plus proches voisins

Matrice basée sur le plus proche voisin : wj; = 1 si et seulement si s; est le
plus proche voisin de s;.

Matrice basée sur les k plus proches voisins : étant donné un entier k,
pour un site /, les indices j tels que wj; = 1 sont ceux de son plus proche
voisin, de son deuxieéme plus proche voisin, etc... jusqu'a son k-ieme plus
proche voisin.
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Chap 4 : Outils statistiques pour données spatiales Matrices de poids
La classe knn

Exemple de code pour construire et représenter une matrice basée sur un
nombre de plus proches voisins égal a 4

wv.knn=knearneigh(coord, k=4, longlat = TRUE)
class(wv.knn)

str(wv.knn)

plot(nc, border=’grey’,xlim=c(-84.5,-82),ylim=c(35,36),
axes=TRUE)

plot (knn2nb(wv.knn), coord, add=TRUE)
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Chap 4 : Outils statistiques pour données spatiales Matrices de poids

Matrices basées sur un nombre de plus proches voisins

Voisinage basé sur les quatre plus proches voisins pour les données SIDS

84.5°W 84°W 83.5°W 83°W 82.5°W 82°W
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Chap 4 : Outils statistiques pour données spatiales Matrices de poids

Variable spatialement décalée avec spdep

Ne pas faire de produit matriciel

nc$SID74_lag.B=lag.listw(nb2listw(knn2nb(wv.knn), style="B"),

nc$SID74)
nc$SID74_lag.W=lag.listw(nb2listw(knn2nb(wv.knn), style="W"),

nc$SID74)
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Chap 4 : Ouitils statistiques pour données spatiales Matrices de poids

Matrices basées sur triangulation de Delaunay

Triangulation de Delaunay : unique triangulation telle que le cercle
circonscrit a trois sommets quelconques ne contient aucun autre sommet.
Permet de construire une matrice : deux sites sont voisins si le segment les
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Chap 4 : Outils statistiques pour données spatiales Matrices de poids

Matrices basées sur triangulation de Delaunay : syntaxe

w.tri=tri2nb(coord)

class(w.tri)

plot(nc, border=’grey’,axes=TRUE)
plot(w.tri, coord, add=TRUE)
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Analyse de la matrice de Delaunay

summary (w.tri)

015
|

— estimation non paramétiaue ce i densié

Neighbour list object:

Number of regions: 131

Number of nonzero links: 752
Percentage nonzero weights: 4.382029
Bverage number of links: 5.740458
Link number distribution:

0.10
I

Densty

0.05
L

3 4 5 & 7T 8 9

115 43 38 27 6 1

1 least connected region: w1l ! |
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000
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Chap 4 : Outils statistiques pour données spatiales Matrices de poids

Comparaison avec matrice des 5 plus proches voisins
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Chap 4 : Ouitils statistiques pour données spatiales Matrices de poids

La classe listw

Lorsqu’on utilise une matrice de poids dans un modéle de régression
spatial, on a besoin de la mettre au format listw. Il faut alors préciser les
options style="B" ou style="W"

@ B matrice binaire

@ W normalisation des lignes

Pour extraire la partie nb d'un objet listw, on utilisera la commande

$neighbours
. La commande
print

appliquée a un objet de type listw donne aussi des statistique utiles.
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La classe listw : petit exemple

t=c(1,2,3,4)

u=c(3,2,5,1)

plot(t,u)

co=cbind(t,u)
W.knn=knearneigh(co,k=2,longlat=TRUE)
plot (knn2nb(W.knn), co, add=TRUE)
W.nb=knn2nb (W.knn)
W.listwl=nb2listw(W.nb,style="B")
str(W.listwl)
W.listwi$neighbours[]
W.listwi$weights[]
W.listw2=nb2listw(W.nb,style="W")
W.listw2%neighbours[]
W.listw2$weights[]
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Chap 4 : Outils statistiques pour données spatiales Indice de Moran

Indice de Moran : définition

Pour une matrice de poids W vérifiant w;; = 0 et un champ
Xs, = Xi,i=1,...n, le “I” de Moran est défini par :

i wii (X —X)(X;—X)

0 XWX >
TUWI XX S (6Xp

C'est le rapport d'une sorte de covariance entre unités contigues a la
variance > sorte de coefficient d'autocorrélation.
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Indice de Moran : propriétés

@ / est indépendant des unités dans lesquelles X est exprimé

@ | est invariant a une symétrisation de la matrice W, (i.e.
W — (W + W")/2)

@ Attention : le I de Moran dépend du choix de la matrice W, et peut
étre affecté par le niveau d’'aggrégation (effet d'échelle) ainsi que par
la forme des unités spatiales
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Chap 4 : Outils statistiques pour données spatiales Indice de Moran

Indice de Moran : interprétation

Si X est centré, les valeurs de X de méme signe et géographiquement
proches contribuent positivement a I.

@ les valeurs positives et fortes de | indiquent une autocorrélation
spatiale positive

@ les valeurs négatives et fortes de | indiquent une autocorrélation
spatiale négative

@ les valeurs proches de 0 indiquent une absence d'autocorrélation
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Chap 4 : Ouitils statistiques pour données spatiales Indice de Moran
Moran scatterplot

Le “Moran scatterplot” est un nuage de points de WX contre X, ou X
est centrée et W normalisée.

Les deux propriétés X centrée et W normalisée impliquent que la moyenne
empirique de WX est égale 3 X et donc 3 0.

On peut superposer au nuage la droite de régression qui passe donc par
I'origine. La pente de celle-ci est égale a I'indice de Moran.

Utilisation :

@ détecter des points aberrants
@ aprécier le degré d'autocorrélation
@ non linéarité — plusieurs régimes d'association spatiale.

Remarque : il est intéressant de normaliser X avant de faire le graphique
pour pouvoir ainsi comparer plusieurs moran plots entre eux.
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Moran scatterplot : exemple
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Chap 4 : Ouitils statistiques pour données spatiales Indice de Moran
Le C de Geary

Le C de Geary est défini par

on—1 Xiwi(Xs — Xs)?
2 Zi,j wij > i(Xs — )_()2

Les valeurs faibles de C indiquent une autocorrélation spatiale positive et
les valeurs fortes de C une autocorrélation spatiale négative.

C est indépendant des unités dans lesquelles X est exprimé.

L' indice de Geary ressemble a la statistique de Durbin Watson en séries
temporelles. Pour comparaison, la statistique de Durbin-Watson pour une
série temporelle centrée est donnée par

DW =77 (Xt — Xe-1)?/ 2opq X2

C
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Lien entre |'indice de Moran et l'indice de Geary

G = "_I[Zf#WU(Xi—X)2+Z;¢1WU(XJ—>_<)2
Zi(Xf_)_()2

]

2n
n—1
n

/
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Chap 4 : Outils statistiques pour données spatiales Indices locaux

Mesures locales d'autocorrélation spatiale (LISA)

Sous les mémes conditions que pour le / de Moran global, pour un site /,
on définit un indice de Moran local par :

i = (X = X)) wi(X; = X)
J#i

Le numérateur du / de Moran global est alors la somme des /;. Si de plus
le champ est standardisé, alors le | de Moran global est la moyenne des /;.
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Chap 4 : Ouitils statistiques pour données spatiales Indices locaux

LISA : valeurs extrémes

Les valeurs extrémes de /; indiquent une agglomération locale de valeurs
semblables : on considére que seules les valeurs éloignées de plus de deux
écarts types sont interprétables.
Si I'autocorrélation globale est positive, on distingue les cas suivants :
o | de Moran local élevé et positif : agrégat local de valeurs extrémes
avec voisins similaires; on parle de "Hot- spot” si dans quadrant
supérieur droit et " Cold spot” si dans le quadrant inférieur gauche

@ | de Moran local élevé et négatif : "High-Low” (resp : Low-High)
valeurs basses avec valeurs voisines similaires et fortes (resp : valeurs
fortes avec valeurs voisines similaires et basses) : ces deux derniéres
catégories correspondent a des atypiques locaux.
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Statistiques " join counts” pour variable dichotomique

Si X; a deux modalités 0 et 1 avec : P(X; = 1) = p, on introduit les
statistiques suivantes appellées " join counts”

1
BB = Z w;i X X;
iy

1
BW =35> wi(X; = X;)*
1.
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Statistiques “join counts” : exemple

joincount.multi(HICRIME, list)
Joincount Expected Variance z-value

low:low 34.000 29.337 18.638 1.0802
high:high 52.000 26.990 17.648 5.9534
high:low 29.000 58.673 26.041 -5.8149
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Statistiques “join counts” : exemple

s .HICRIME<-sample (HICRIME)
joincount.multi(s.HICRIME, list)
Joincount Expected Variance z-value

low:low 27.000 29.337 18.638 -0.5413
high:high 24.000 26.990 17.648 -0.7117
high:low 64.000 58.673 26.041 1.0438
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Les domaines d'application des semis de points

Domaines classiques : épidémiologie, écologie, foresterie.
Quelques exemples

@ la disposition de certaines espéces végétales dans une forét,

@ les adresses de patients affectés d'une certaine maladie dans une
région,

la répartition de cellules dans un tissu biologique,

les emplacements des épicentres de secousses sismiques enregistrées,

la localisation de trésors archéologiques retrouvés sur un site
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Chap 4 : Ouitils statistiques pour données spatiales Outils pour semis de points
Ve \ \ yd B
Phénomeénes a modéliser

Répartition alétoire de points dans R? avec un nombre de points aléatoire.
Inhomogénéité spatiale. Des zones ont en moyenne plus de points que
les autres.

Interaction spatiale. La compétition pour la nourriture ou I'espace peut
engendrer de la répulsion entre les points. Au contraire, si I'on observe
I'occurence de maladies épidémiques, on va avoir de |'aggrégation.
Difficulté. une seule réalisation = confusion entre hétérogénéité et
interaction.

Des agrégats apparents peuvent étre engendrés soit par une inhomogénéité
spatiale soit par de l'interaction entre les points.

Questions classiques : tester I'hypothese CSR, détecter régularité ou
agrégation, ajuster un modele, détecter agrégats.
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Modele mathématique : processus ponctuel

Configuration de n points de E C R? : ensemble de n points non ordonné
x={x1, ", Xn}

Espace des configurations (ou espace exponentiel) : I'espace Nj des
sous-ensembles x localement finis de E, c'est a dire tels que le nombre de
points de x contenus dans tout borné de E est fini, muni d'une tribu A/.
Tribu Njs sur Njr : exemples d'évenements "il y a au plus 50 points dans
la configuration”, "les points de x sont distants d'au moins r", "il n'y a
aucun point dans B", etc.

Un processus ponctuel est dit marqué lorsqu'a chaque position est
associée une variable aléatoire dite “marque” : par exemple, s'il s’agit
d’arbres dans une forét, la marque peut étre la taille ou le diametre de
["arbre.
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Chap 4 : Outils statistiques pour données spatiales Outils pour semis de points

Modele mathématique : processus ponctuel

Deux définitions pour un processus ponctuel X :
@ une variable aléatoire 3 valeurs dans I'espace Njr muni de Njf

@ un ensemble aléatoire X de points X; de E tel que le nombre de
points de E tombant dans A soit une variable aléatoire finie, pour
tout borélien borné A de E.

Un PP X est simple si le nombre de points de E tombant dans {x} pour
tout x € E est presque surement égal a 0 ou 1.
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Loi d'un processus ponctuel

La loi de probabilité induite sur Ny muni de Ny est la loi de X.

Pour un borélien B de R?, on notera Nx(B) = > xex 1(xi € B) le nombre
de points d'une configuration appartenant a B : pour tout B, N(B) est
une variable aléatoire.

La loi d'un processus ponctuel est définie par les probabilités P(X € Y),
pour tout Y € Njr : cette famille contient en particulier la famille des
probabilités fini-dimensionnelles P(Nx(B1) = n1, ..., Nx(Bx) = nk) qui
caractérisent entierement la loi.
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Chap 4 : Ouitils statistiques pour données spatiales Outils pour semis de points

Loi d'un processus ponctuel

Nous adopterons ici une approche plus commode pour les applications (E
borné) consistant a définir une densité jointe pour les variables N, nombre
de points, et Xi, ..., Xy, localisations des N points (Cressie, 1993,

p.622) : f((x1, - ,xn),n). On a alors

Z/ f((sl,--- ,s,,),n)dsl---ds,,zl.
n=0 "

De facon équivalente, on se donne
@ la famille des probabilités p, = P(Nx(E) = n), pour n > 0

o les densités g, sur E" des configurations a n points (invariantes par
permutation)
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Un exemple : le processus de Poisson homogene

Le processus de Poisson homogene PPP(\) est le modeéle de base en
théorie des processus ponctuels car il formalise le concept de points
répartis au hasard. Il est défini par les deux conditions suivantes pour E
borélien borné :

o (i) il existe un réel A > 0 tel que pour tout borélien A de R?, Nx(A)
suit une loi de Poisson de moyenne A | A |, ou | A | désigne I'aire de A.

e (ii) sachant que Nx(A) = n, les n points du processus qui sont dans
A forment un échantillon de la loi uniforme sur A.
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Chap 4 : Outils statistiques pour données spatiales Outils pour semis de points

Propriétés du Poisson homogene

Les deux conditions (i) et (ii) impliquent la condition (iii) suivante :
pour deux boréliens A et B, les variables aléatoires Nx(A) et Nx(B) sont

indépendantes.
Le processus de Poisson homogene est stationnaire et isotrope.
On démontre que les probabilités fini-dimensionnelles de ce processus sont

données par
P (NX(Bl) =nmn,..., NX(Bk) = nk) =

>\n1+...+nk | Bl |n1 | Bk |nk k
— A Be ).
nl!...nk! exp( lz_; | k|)
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Chap 4 : Outils statistiques pour données spatiales Outils pour semis de points

Propriétés du Poisson homogene

Soit A un borélien borné de E, conditionnellement a {Nx(A) = n}, les

points Xi,---, X, de X dans A sont indépendants et uniformément
identiquement distribués

aire(B)

PX,' B :)\_7,
(Xi € B) aire(A)

pour tout borélien B inclus dans A.
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Simulation d'un PPP homogene

window=owin(c(0,10),c(0,10))
poisson=rpoispp(l,win=window)
plot(poisson)
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Chap 4 : Outils statistiques pour données spatiales Outils pour semis de points

L'hypothese CSR

CSR : complete spatial randomness

L'hypothése CSR pour un PP est I'hypthése que le PP est un processus de
Poisson homogene. Elle contient donc deux sous-hypotheses :

o I'homogénéité de I'intensité

@ l'absence d'interaction
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Chap 4 : Ouitils statistiques pour données spatiales Outils pour semis de points
= 7
Intensité

L'intensité est |'analogue pour le processus ponctuel de I'espérance pour
une variable aléatoire.
La mesure d'intensité est une mesure sur les boréliens B de R? vérifiant

A(B) = E(N(B)),

de fagon que A(B) représente le nombre moyen de points du processus
dans B.

Si le processus est stationnaire, cette mesure est proportionnelle a la
mesure de Lebesgue et le facteur de proportionalité, X, appellé intensité,
représente le nombre moyen de points du processus par unité de surface.
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Chap 4 : Outils statistiques pour données spatiales Outils pour semis de points
5 e o o
Fonction d'intensité

Plus généralement, si A est absolument continue par rapport a la mesure
de Lebesgue, il existe une fonction A localement intégrable définie sur E
telle que pour tout borélien B,

Cette fonction A porte le nom de fonction d’intensité du processus
ponctuel.
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Chap 4 : Outils statistiques pour données spatiales Outils pour semis de points

Intensité et stationnarité

Si le processus est stationnaire, la fonction d’ intensité est constante.
Inversement, si le fonction d'intensité est constante, le processus est dit
stationnaire au premier ordre ou homogeéne (sinon, il est dit inhomogene).

Dans le cas du processus de Poisson homogene, la fonction d’intensité est
constante égale au parameétre A de la définition.
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Estimation de l'intensité - cas homogene

Dans le cas d'un processus homogeéne d'intensité A, un estimateur sans
biais de I'intensité est donné par

2 N

wT
ou W est la fenétre d'observation et N = N(W) le nombre de points
observés dans cette fenétre. Il coincide en fait avec |'estimateur du
maximum de vraisemblance dans le cas ou le processus est un Poisson

homogene.

> summary (poisson)
Planar point pattern: 91 points
Average intensity 0.91 points per square unit

Window: rectangle = [0, 10]x[0, 10]units
Window area = 100 square units
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Chap 4 : Ouitils statistiques pour données spatiales Outils pour semis de points

Le processus de Poisson inhomogéne

Le processus de Poisson homogeéne ayant une intensité constante ne peut

servir a modéliser des phénomenes présentant une forte hétérogénéité
spatiale.

Etant donné une fonction d'intensité A\, on peut définir le processus de
Poisson X de mesure d'intensité Adx par les deux conditions suivantes
o (i) le nombre de points N(A) de X dans tout borélien A de R?, suit
une loi de Poisson de moyenne A\(A),

o (ii) les nombres de points de X dans k boréliens Ay, ..., Ax disjoints
de R? sont k variables aléatoires indépendantes.
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Chap 4 : Outils statistiques pour données spatiales Outils pour semis de points

Le processus de Poisson inhomogéne

Ainsi défini, ce processus n'est pas stationnaire sauf si I'intensité est
constante.

Conditionnellement a N = n, les n points Xi, ..., X, sont alors i.i.d..
Il existe une relation directe entre la fonction d’intensité du processus

ponctuel, A(.), et la densité d-dimensionnelle f(.) de toute localisation X;
conditionnellement a N :

A(s)

Vs € E, f(s) = W
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Chap 4 : Ouitils statistiques pour données spatiales Outils pour semis de points

Simulation d'un PPP inhomogene

Pour simuler un processus de Poisson inhomogeéne dans spatstat, on utilise
a nouveau la fonction rpoispp, en précisant en input |'intensité soit comme
une fonction des coordonnées soit comme une image (le deuxiéme
argument précise le maximum de I'intensité).

window=owin(c(0,10),c(0,10))
poisson_inhom=rpoispp(function(x,y){10*exp (-3*x)+10*exp (-3*y)
,20,win=window)

plot(poisson_inhom)

poisson_inhom2=rpoispp(Z)

plot(poisson_inhom2)
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Estimation de l'intensité - cas inhomogene

Dans le cas inhomogeéne, on peut utiliser un estimateur non paramétrique,
introduit par Diggle (1985)donné par

(o) — 2imt I ()
)‘h(s) - fE hl_dK(s_Tu)hdu (1)

ou le dénominateur est un terme de correction au bord nécessaire lorsque
le domaine d'observation est limité et ol K est une fonction noyau.
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Estimation de l'intensité - cas inhomogene

L' estimateur de Diggle est, de méme qu'un estimateur non paramétrique
de densité, peu sensible au choix du noyau K. Le choix de la largeur de
bande ou fenétre h permettant de minimiser I'erreur quadratique moyenne
intégrée

EQMI(h) = E{/E(Xh(s) — A(s))%ds}

se fait selon des méthodes similaires au cas de |'estimation de densité.
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Chap 4 : Outils statistiques pour données spatiales Outils pour semis de points

Estimation de l'intensité - cas inhomogene

Dans spatstat, on peut évaluer cet estimateur avec un noyau gaussien par
la fonction density.ppp, I'output est alors une image de classe im que I'on
peut représenter avec plot. Avec les données Pompiers

h=5000

Z=density.ppp(PP,h, edge=TRUE)
plot(Z)

4e-06 6e-06

2e-06
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Chap 4 : Ouitils statistiques pour données spatiales Outils pour semis de points

Interaction spatiale

Du fait de la propriété (ii), le processus de Poisson implique une absence
d’interaction entre les événements.
Les caractéristiques du second ordre vont permettre de mettre en évidence
deux autres types de comportement. On distingue d'une part
@ les processus pour lesquels les évenements ont tendance a s'attirer :
aggrégation
@ ceux pour lesquels les évenements ont tendance a se repousser :
régularité.
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Chap 4 : Outils statistiques pour données spatiales Outils pour semis de points

Distance d'un point courant au plus proche voisin

Soit x un point de E qui ne figure pas nécéssairement dans une
configuration du PP X.

Pour un processus ponctuel X homogene, on définit

Fx(r) =B(d(x, {x1, -+, xa} \ {x}) < r).

Notons qu'en raison de I'homogénéité F, ne dépends pas de x, c'est
pourquoi nous le noterons plus simplement F.
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Chap 4 : Ouitils statistiques pour données spatiales Outils pour semis de points
Fonction F

F est la fonction de répartition de la distance au plus proche voisin et peut
aussi s'interpréter comme la mesure de "I'espace vide" (c’est pourquoi on
I'appelle "empty space function” en anglais) dans le sens suivant :

1 — F(r) est la probabilité qu'une boule de centre 0 (ou un quelconque
point de E fixé) et de rayon r ne contienne aucun point de X.

Sous I'hypothese CSR d'homogénéité spatiale sur R?, la fonction F a la
forme analytique suivante pour x > 0

F(x) =1 — exp(—mAx?).
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Chap 4 : Outils statistiques pour données spatiales Outils pour semis de points
Estimateur de F

Pour estimer F, on utilise en général une grille fine de points définie sur E
qui permet d'approximer les distances au plus proche voisin. A gauche,
exemple simulé Poisson homogene, a droite, exemple simulé Poisson
inhomogene.

Fpois Fpois_inhom
o [
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Estimateur de F : graphique alternatif

Sous forme de probability-probability plot :

Fpois
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Chap 4 : Outils statistiques pour données spatiales Outils pour semis de points

Distance d'un point du PP a son plus proche voisin :
fonction G

Si cette fois, on s'intéresse a la distance entre un point du PP et son plus
proche voisin, on définit la fonction de répartition de ces distances G par

G(r) =P(d(x, {x1, - ,xa} \ {x}) < r | x € X).

Un estimateur classique de G est donné par la fonction de répartition
empirique définie par

N

~ 1

G(r)= Nzl(d(xivxj(i)) <r),
i=1

ou X;(;y est le point de X le plus proche de x;.
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Chap 4 : Outils statistiques pour données spatiales Outils pour semis de points
Fonction J

A partir de F et G, on peut définir la fonction J par

_1-6()
J(r) = 1_7,__“)

J =1 correspond au cas d'un processus poissonnien.
J > 1 indique une tendance a la régularité et J < 1 a I'aggrégation.

cells data redwood data

%0
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Chap 4 : Ouitils statistiques pour données spatiales Outils pour semis de points

Moment factoriel d’ordre 2

De méme que I'on a introduit la mesure d'intensité pour le moment
d'ordre 1, le réle du moment d'ordre 2 est joué par la mesure de moment
factoriel d'ordre 2, donnée pour tous boréliens By et B, de R? par

042(31 X Bg) = E(N(Bl)N(Bg)) — /\(Bl N Bg).

Lorsque cette mesure est absolument continue par rapport a la mesure de
Lebesgue, on note py sa densité, appellée densité d'intensité d'ordre 2.
Pour un PP stationnaire, la fonction pa(x, y) ne dépends que de x — y.
Si de plus le PP est isotrope, elle ne dépends que de || x — y ||.
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Fonction de corrélation des paires

A partir de pp, on définit la fonction de corrélation des paires g par

_ p2(X7 y)
80X = N0A0)

Fonction g et interaction :

Pour un PP de Poisson, on a g(x,y) = 1.

Si g(x,y) > 1, cela indique que pour ce PP, il est plus probable d'observer
un couple de points en x et y que pour un PP de Poisson ayant la méme
intensité.

Si le PP est stationnaire et isotrope, g est une fonction de r =|| x — y || ;
g(r) > 1 indique une tendance a |'aggrégation pour des points a distance
r, et inversement, g(r) < 1 indique une tendance a la répulsion pour des
points a distance r.
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Chap 4 : Ouitils statistiques pour données spatiales Outils pour semis de points
Fonction K de Ripley

Une facon alternative de caractériser les propriétés du second ordre est au
travers de la fonction K de Ripley et de la fonction L qui lui est associée.
Pour un PP stationnaire, introduisons la mesure k, appellée mesure des
moments réduits d'ordre deux, pour un borélien B par

k(B) = /\12/Bp2(x)dx.

Si de plus le PP est isotrope, en prenant pour B une boule B(0, r) de
centre I'origine et de rayon r, la fonction K de Ripley est définie par

K(r) = k(B(0,r)).

K(r) peut aussi s'interpréter comme le nombre moyen de points du PP
dans une boule centrée en un des points du PP, horsmis le centre
lui-méme.
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Chap 4 : Ouitils statistiques pour données spatiales Outils pour semis de points
Fonction L

Pour un PP de Poisson homogene, K(r) = mr? et ceci engendre une autre
méthode de comparaison avec un modele de Poisson.

Pour faciliter la comparaison et aussi pour réduire la variance, il est
d'usage de renormaliser la fonction K en définissant la fonction L par

K(r)
L(r) = 1/2,
(n=(=")
Pour le PP de Poisson homogene, la fonction L est donc égale a r.
Lorsque L(r) — r > 0, cela indique un phénomene d'aggrégation pour des
distances inférieures ou égales a r, et lorsque L(r) — r > 0, cela indique un
phénomene de régularité pour des distances inférieures ou égales a r.
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Chap 4 : Outils statistiques pour données spatiales Outils pour semis de points
Relations entre g, p, et K

Pour un PP stationnaire et isotrope, les relations suivantes existent entre
g, metK:
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Chap 4 : Outils statistiques pour données spatiales Outils pour semis de points
Estimateur de g

Pour estimer g, on peut commencer par estimer p> par un estimateur a
noyau de la densité incluant une correction de bord (diverses corrections
existent).

On peut alors en déduire un estimateur de la fonction de corrélation des

paires en divisant par S\(X))\(y), ol \ est I'estimateur de Diggle de
I'intensité.
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Chap 4 : Outils statistiques pour données spatiales Outils pour semis de points

Estimateur de g

La figure suivante montre un estimateur de la fonction de corrélation des
paires pour les données cells a gauche et redwood a droite.

fonction de- correlation des paires pour cells

fonction de correlation des paires pour redwood
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Chap 4 : Ouitils statistiques pour données spatiales Outils pour semis de points

Estimateur de K

On peut estimer directement la fonction K par

A 1(x —y € B(0,r))
K(r) = — ,
) xexgezwe, A(X)A(y)

ou Wy, désigne I'ensemble des points de la fenétre W tels que la boule
centré en ce point et de rayon r soit entierement incluse dans W.
D’autres formules existent mais consistent essentiellement a faire d’'autres
corrections de bord.

Notons que les relations entre g et K permettent aussi de déduire un
estimateur de g a partir d'un estimateur de K.
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Chap 4 : Outils statistiques pour données spatiales Outils pour semis de points
Estimateur de K

La figure suivante présente des estimateurs des fonctions de Ripley pour
les données cells et redwood et I'on voit bien a nouveau la différence de
comportement entre processus régulier et aggrégé.

Fonction K de Ripley pour cells Fonction K de Ripley pour redwood
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Estimateur de K pour les données Pompiers
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Le package GeoXp

Le module ou “package” GeoXp du logiciel R, disponible sur le site CRAN,
a été développé a I'Université des Sciences Sociales de Toulouse pour
constituer un outil d'analyse exploratoire spatiale, complémentaire de
divers autres packages de R, plus orientés vers la modélisation de données
spatiales.

Depuis la version 1.5.0, les fonctions de GeoXp travaillent sur des objets
de type SpatialXXXDataFrame, c'est a dire comportant en sus des variables
d'intérét, une information géographiques sur les unités spatiales.
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Chap 5 : Introduction a GeoXp

Documentation sur GeoXp

Une fois le package installé et chargé dans la session de travail, I'utilisateur
pourra consulter la notice en anglais disponible avec le package en
exécutant la commande suivante :

vignette("presentation_geoxp")
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Principe d'interactivité de GeoXp

GeoXp lie de facon dynamique des graphiques statistiques avec une carte
Nature des graphiques statistiques

@ classiques : histogrammes, boites a moustaches, diagramme de
dispersion, courbe Lorentz, etc.

@ spécifiquement spatiaux : nuage de variogramme, diagramme de
Moran
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Principe d'interactivité de GeoXp

Lien dynamique bilatéral

@ La sélection d'un point ou d’'une zone sur la carte résulte en la mise
en évidence des éléments correspondants du graphique statistique
(changement couleur et/ou symbole)

o La sélection d'un élément du graphique statistique résulte en la mise
évidence des points ou zones correspondantes sur la carte
(changement couleur et/ou symbole)

La sélection peut se faire par point ou par polygone.
La mise en évidence de points ou zones sur un graphique se fait par un
changement de couleur et/ou symbole.
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Chap 5 : Introdu

Exemple : histogramme

Coiit par éléve : sites sélectionnés par clic de souris sur les barres de
I'histogramme et représentés en rouge sur la carte.
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Exemple : histogramme

Coiit par éléve : sites sélectionnés par clic de souris sur les barres de
I'histogramme et représentés en rouge sur la carte.
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Exemple : histogramme

Colit par éléve : sites sélectionnés point par point ou par polygone sur la
carte et représentés en rouge sur |’histogramme.
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Exemple : histogramme

Colit par éléve : sites sélectionnés point par point ou par polygone sur la

carte et représentés en rouge sur |’histogramme.
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Trois fenétres

L'appel a une des fonctions GeoXp fait apparaitre trois fenétres : une
fenétre pour I'affichage du graphique statistique, une fenétre pour
I'affichage de la carte et une fenétre “menu”. L'utilisateur doit d’abord
choisir dans le menu le graphique sur lequel il désire sélectionner
(graphique statistique ou carte), ce qui a pour résultat de rendre ce
graphique actif.

ClEl=}
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Chap 5 : Introduction a GeoXp

Exemple de syntaxe

Le premier argument renseigne un objet de type SpatialXXXDataFrame et
le second argument le (ou les) nom de la variable a étudier.
Exemple d'appel :

histomap (immob.spdf, "prix.vente")

Christine Thomas-Agnan (TSE) Analyse statistique des données spatiales IV 1¢" novembre 2012 9 /37



Les cartes de GeoXp

Les cartes produites par GeoXp sont rudimentaires car |'objectif n'est pas
la cartographie mais I'analyse interactive entre carte et graphique
statistique.

Néanmoins on peut améliorer I'aspect des cartes si I'objet est de type
SpatialPolygonsDataFrame ou si I'on dispose d'un objet de type
SpatialPointsDataFrame et d'un fond de carte. L'option d’affichage du
fond de carte est accessible depuis le menu.

On peut donner un étiquetage ou label a chaque observation, par exemple
le nom ou le code de la zone. Pour cela, il faut que row.names(objet) soit
non nul. En utilisant I'option identify=TRUE des fonctions de GeoXp, les
étiquettes des points sélectionnés apparaissent alors sur la carte a I'issue
d'une sélection.
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Chap 5 : Introduction a GeoXp
Options

Que ce soit pour les cartes ou les graphiques statistiques, il y a diverses
options qui permettent de modifier leur apparence, par exemple

@ la sélection sur une barre d'histogramme peut étre représentée par
une coloration différente (option col=),

@ la sélection d'un point sur la carte peut étre représentée par un
symbole différent (option pch=).
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La sélection

L'utilisateur choisit le type de sélection qu'il désire faire sur le graphique
actif (par points, par polygone, barre, etc) et exécute ensuite cette
sélection. Un click droit de la souris fait apparaitre le bouton “stop” qui
permet de terminer une sélection. L'utilisateur peut sélectionner des
éléments de la carte avec la souris de deux facons différentes :

@ soit un nombre fini de points non connu a I'avance,

@ soit I'ensemble des points contenus dans un ou plusieurs polygones :
I'utilisateur saisit alors les sommets du ou des polygones avec la souris
et termine a nouveau par un click droit.
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La sélection

Pour les sélections sur le graphique statistique, plusieurs cas :

@ Dans le cas d'un histogramme pour une variable quantitative ou d'un
diagramme en barre pour une variable qualitative, |la selection permet
de choisir une ou plusieurs barres de I'histogramme, non
nécéssairement contigiies.

@ Dans le cas de la courbe de densité, la sélection porte sur un ou des
intervalles sur |'axe des abscisses.

@ Dans le cas des boites a moustaches, la sélection peut porter soit sur
les points atypiques, soit sur un ou des quartiles.

@ Dans le cas des diagrammes de dispersion, la sélection porte
simplement sur un sous ensemble de points et peut se faire comme
pour la carte soit sur un nombre fini de points non connu a I'avance
soit sur I'ensemble des points contenus dans un polygone.
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Quitter le menu et sauvegarder la sélection

La derniére ligne du menu contient les cases “Save results” et “Exit
without saving " qui permettent de quitter la fonction.

NB : tant que |'utilisateur n'aura pas cliqué sur une de ces cases, il ne
pourra pas ouvrir une autre fonction de GeoXp.

Si l'utilisateur a choisi la case "Save results’, cela a pour effet de créer un
objet de type numeric, appelé last.select et qui contient les indices des
derniéres unités spatiales sélectionnées qui peut étre réutilisé dans des
analyses ultérieures, par exemple pour caractériser la zone sélectionnée.
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Chap 5 : Introduction a GeoXp

Corriger une sélection

L'utilisateur peut corriger toute sélection en cours sans avoir a redémarrer
le processus a zéro, c'est a dire qu'il peut déselectionner un point
sélectionné par erreur.

De méme, il peut modifier une sélection par ajout ou soustraction apres en
avoir constaté les effets sur I'autre graphique sans avoir a sortir et rappeler
la fonction.

Le graphique non actif est actualisé a3 mesure de la sélection.
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Graphique supplémentaire

L'utilisateur a la possibilité de faire un graphique supplémentaire choisi
parmi : histogramme, diagramme en barre, nuage de points

Mais avec une interactivité unilatérale : les sélections faites sur le
premier graphique ou sur la carte se répercutent sur le graphique
supplémentaire mais on ne peut pas sélectionner sur ce dernier.

Les variables proposées sont toutes celles contenues dans objet@data.
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Chap 5 : Introduction a GeoXp

Label

On peut mettre un label ou étiquette sur les sites sélectionnés (nom ou

code de la zone ou autre caractéristique). Pour cela on utilise I'option
identify=TRUE.

histomap (immob.spdf,"prix.vente",identify=TRUE)
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Cercles concentriques

On peut représenter les sites avec une taille proportionnelle a une variable
choisie parmi les variables de type numeric incluses dans objet@data. Il
suffit ensuite d'utiliser le bouton “bubbles”.

Le choix de cette case a pour effet d'ouvrir une fenétre tk qui vous
demande si vous souhaitez afficher une légende sur la carte pour donner la
correspondance entre taille des cercles et valeurs prises par la variable
sélectionnée.
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Chap 5 : Introduction a GeoXp

Sélection non interactive

On peut afficher une sélection supplémentaire non active qui sert de
réperage avec le bouton “Preselected sites”. Il faut utiliser I'option
criteria qui contient un vecteur de booléen de la méme taille que I'objet
spatial. Par exemple, pour préselectionner les villes avec un prix de location
moyen au m? supérieur a 12 euros :

histomap(immob.spdf,"prix.vente",
criteria=(immob.spdf@data$prix.location>12))
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Couleurs et symboles

Pour les graphiques manipulant une variable qualitative, I'option col=
permet de donner des couleurs différentes (sur le diagramme en tuyaux
d'orgue et sur la carte) en fonction des modalités du facteur.

L'option pch a pour effet de d'afficher les unités spatiales sur la carte avec
des symboles différents.

Par exemple :

barmap (columbus, "CP",col=c("orange","violet") ,pch=c(2,4))
Le code ci-dessus a pour effet d’ouvrir une fenétre tk qui vous demande si

vous souhaitez afficher une Iégende sur la carte pour donner la définition
des couleurs et symboles représentés.
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Chap 5 : Application de GeoXp a I'analyse exploratoire

Analyse d'une répartition

Pour décrire la répartition d’une variable quantitative de fagon plus fine
qu'avec une boite a moustache, on peut utiliser un histogramme ou un
estimateur a noyau de la densité.

L'avantage d'un estimateur continu de la densité sur I'histogramme est
évident lorsque I'on veut comparer deux répartitions : par exemple celle
d’'une variable sur I'ensemble de la région avec celle de la méme variable
sur une sous-région. On peut superposer deux histogrammes en fréquence
mais la superposition de deux courbes de densité reste plus lisible.
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Chap 5 : Application de GeoXp a I'analyse exploratoire

Analyse d'une répartition : exemple avec densitymap
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Analyse d'une répartition

Que ce soit avec I'histogramme ou avec la densité, il est intéressant pour
une variable donnée d'explorer en particulier les queues de distribution, a
droite et a gauche, pour déterminer si elles occupent une position
particuliere sur la carte. La sélection des queues de la distribution met
potentiellement en lumiére sur la carte des zones ayant un comportement
atypique. Inversement, si I'on s'intéresse a une sous-région donnée, sa
sélection sur la carte permet de comparer la sous-distribution de la variable
dans cette zone avec la distribution globale. Le paramétre de lissage de
I'estimateur a noyau de la densité est ajustable a |'ceil avec une réglette.
Pour une variable qualitative, le diagramme en barre remplace
I'histogramme, mais |'utilisation et les objectifs sont similaires.
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Chap 5 : Application de GeoXp a I'analyse exploratoire

Application : Zone de chalandise basée sur les
distances-temps

Zone de chalandise du magasin E085 basée sur les distances-temps.
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Chap 5 : Application de GeoXp a I'analyse exploratoire

Analyse de concentration : concentration du potentiel
cumulé en géomarketing
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Potentiel : P;; CA du magasin j provenant de I'iris i. Potentiel total de I'iris
i : somme des potentiels sur tous les magasins (enseigne et concurrence).
Produits blancs : 86 % des iris aux plus faibles potentiels concentrent 50
% du potentiel total (correspondant a des dépenses de moins de
277090.33 euros sur la période d'interét) — agglomérations toulousaines
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Chap 5 : Application de GeoXp a I'analyse exploratoire

Analyse bivariée

Pour la magasin E085, sélection d'iris ayant un fort potentiel par habitant
comparé a des iris a méme distance de E085.

0 w0 200 w0 40 S0

pop
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Chap 5 : Application de GeoXp a I'analyse exploratoire

Analyse exploratoire d'une tendance directionnelle

Avec la fonction driftmap de GeoXp, tendance de la variable HOVAL des

données columbus
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Chap 5 : Application de GeoXp a I'analyse exploratoire

Analyse exploratoire d'une tendance directionnelle

Avec la fonction angleplotmap de GeoXp, tendance de la variable latitude
des données columbus
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Diagramme de Moran

Le “Diagramme de Moran” est un nuage de points de WX contre X, ou
X est centrée et W normalisée.
On peut superposer au nuage la droite de régression qui passe par le point
moyen. La pente de celle-ci est égale a |'indice de Moran.
Utilisation :

@ détecter des points aberrants

@ aprécier le degré d'autocorrélation

@ non linéarité — plusieurs régimes d'association spatiale.

Remarque : il est intéressant de normaliser X avant de faire le graphique
pour pouvoir ainsi comparer plusieurs moran plots entre eux.
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Chap 5 : Application de GeoXp a I'analyse exploratoire

Diagramme de Moran

Diagramme de Moran de la variable HOVAL (données columbus) avec
coloration des quatre quadrants
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Graphique des voisinages

Pour une matrice de voisinage W et une variable X données, le graphique
des voisinages consiste en un simple diagramme de dispersion ol |'on
porte pour tout site i, en abscisse la valeur X; de la variable X au site i et
en ordonnée les valeurs X; de la variable X aux sites j voisins de i au sens
de W, c'est-a-dire tels que w;; #= 0.

Dans GeoXp, ce diagramme est lié a la carte grace a la fonction
neighbourmap et la sélection d'un point sur ce graphique provoque
I'affichage du site correspondant sur la carte ainsi que de ses voisins au
sens de W, reliées a i par un segment.
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Analyse exploratoire d'une matrice de voisinage

Si I'on utilise la fonction neighbourmap de GeoXp avec les variables
géographiques (latitude ou longitude), ce diagramme permet d’explorer la
matrice dans le sens suivant

@ visualiser qui est voisin de qui
@ aprécier visuellement la taille des voisinages (si matrice de type knn)

@ aprécier visuellement le nombre de voisins (si matrice de type
distance)

library(GeoXp)
neighbourmap(nc, "east", wd.nb)
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Chap 5 : Application de GeoXp a I'analyse exploratoire

Diagramme des voisins pour la matrice de Delaunay

Variable : Latitude, voisins avec de grandes differences en latitude

Latitude des voisins
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Analyse exploratoire d'une matrice de voisinage

La fonction 'barnbmap’ de GeoXp réalise un diagramme en tuyaux d’'orgue
du nombre de voisins des sites, lié a une carte.

barnbmap (nc,wd.nb)

Pour données SIDS avec la matrice basée sur un seuil de distance

Tl

9 11 13 15 17 19 21 23
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Analyse exploratoire d'une matrice de voisinage

De méme, la fonction 'histnbmap’ réalise un histogramme des distances
aux voisins lié a une carte.

histnbmap (nc,knn2nb (wv.knn))

Pour données SIDS avec la matrice basée sur les quatre plus proches
voisins
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Valeurs atypiques

Des que les données sont géoréférencées, il existe deux sortes de valeurs
atypiques : les globales et les locales.

Un point est dit aberrant global pour la variable X si sa valeur pour X est
extréme par rapport a I'ensemble de la distribution de X.

Un point est dit aberrant local pour la variable X si sa valeur pour X est
extréme par rapport a I'ensemble de la sous-distribution des X sur ses
voisins (pour une structure de voisinage donnée).

Un aberrant global est nécessairement un aberrant local, mais un aberrant
local peut tres bien ne pas étre un aberrant global.

Pour détecter les aberrants locaux, on peut utiliser la fonction
neighbourmap sur la variable d'intérét. lls apparaissent alors comme les
points éloignés de la diagonale.
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Chap 5 : Application de GeoXp a I'analyse exploratoire

Valeurs atypiques illustration

Variable 2

Goordonnée

Variable 1 coordonnée géographique 1
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Tests d’autocorrélation pour variables surfaciques
Test de Moran pour variable surfacique continue

Il s'agit de tester I'hypothese d'absence d'autocorrélation spatiale pour une
variable brute X.

Hp : absence d'autocorrélation spatiale

Hj : présence d’autocorrélation spatiale

Il faut préciser Hy <— deux modeles différents
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Tests d’autocorrélation pour variables surfaciques
Test de Moran pour variable surfacique continue : test
gaussien

o le modele “free sampling” : Xi,--- , X, sont i.i.d. N(0,c?)
Ce test, dit “test gaussien”, teste si I'échantillon observé est
représentatif de la distribution d'un vecteur gaussien de composantes
ii.d.
En pratique, on utilise la loi asymptotique de | sous Hy. Pour cela, on
a besoin de normaliser d’abord I'indice en lui enlevant sa moyenne et
en le divisant par son écart-type. Ensuite, on utilise la loi
asymptotique N(0,1) de I'indice normalisé pour calculer une p-valeur
associée.
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Tests d’autocorrélation pour variables surfaciques
Les moments du | de Moran sous |'hypothese nulle

Le calcul des moments du | de Moran utilise le Théoréeme de Pitman et
Koopmans

Si X1,--- X, sont i.i.d. N(0,1) et si

H = h(Xi,- -, Xy) est une statistique indépendante de I'unité

(h(AX1,- -+, AXn) = h(X1,- -+, Xn) quel que soit A > 0), alors H est
indépendante de Q = >°7_; X2.

Dans le modele free-sampling, on obtient

E() =~ E(1?) =

n?S; — nS; + 352
(n2 —1)S2
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Chap 6 : Tests Tests d’autocorrélation pour variables surfaciques

Test de Moran pour variable surfacique continue : test
gaussien

> moran.test (columbus$HOVAL, nb2listw(col.gal.nb),
randomisation=FALSE)

Moran’s I test under normality

data: columbus$HOVAL
weights: nb2listw(col.gal.nb)

Moran I statistic standard deviate = 2.066, p-value = 0.01941

alternative hypothesis: greater

sample estimates:

Moran I statistic Expectation Variance
0.173645208 -0.020833333 0.008860962
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Chap 6 : Tests Tests d’autocorrélation pour variables surfaciques

Test de Moran pour variable surfacique continue : test
gaussien

Expliquez cette expérience :

>S=sample (columbus$HOVAL, length(columbus$HOVAL))

>moran.test (S, nb2listw(col.gal.nb), randomisation=FALSE)
Moran’s I test under normality

data: S
weights: nb2listw(col.gal.nb)

Moran I statistic standard deviate = -0.2821, p-value = 0.611

alternative hypothesis: greater
sample estimates:

Moran I statistic Expectation Variance
-0.047385261 -0.020833333 0.008860962
Analyse statistique des données spatiales V 2 novembre 2012
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Tests d’autocorrélation pour variables surfaciques
Test de Moran pour variable continue : test de permutation

@ le modele “non free sampling” ou modele de randomisation :
conditionnellement a X; = x;, en I'absence d'autocorrélation spatiale

les n! permutations des réalisations xi, - - - , x, sont équiprobables. Ce
test, dit "test de permutation”, teste si |'échantillon observé est
représentatif d'une allocation aléatoire uniforme des valeurs xi, -+ , xp
aux n sites de la carte. Dpans ce cas, notons que les lois marginales conditionnelles ne sont pas
indépendantes.

On a aussi E(/) = — -1 mais la formule de la variance est plus
compliquée.
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Tests d’autocorrélation pour variables surfaciques
Test de Moran pour variable continue : test de permutation

En pratique, on tire au hasard T permutations, on calcule les indices de
Moran pour chacune de T permutations, leur minimum /,,;, et maximum
Imax. On compare alors la valeur observée de I'indice de Moran avec
I'intervalle [Imin, Imax]-

On rejette Hyp si I'indice de Moran n'est pas dans cet intervalle.

Le “pseudo-niveau de signification” empirique du test est égal a
(L+1)/(T +1) ou L est le nombre de fois parmi les T permutations que
I'indice de Moran recalculé dépasse la valeur observée sur I'échantillon. (le
+1 vient du fait qu'on compte |'observation et les T permutations).
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Tests d’autocorrélation pour variables surfaciques
Test de Moran pour variable continue : test de permutation

> moran.test(columbus$HOVAL, nb2listw(col.gal.nb),
randomisation=TRUE)

Moran’s I test under randomisation

data: columbus$HOVAL
weights: nb2listw(col.gal.nb)

Moran I statistic standard deviate = 2.1001, p-value = 0.01786

alternative hypothesis: greater

sample estimates:

Moran I statistic Expectation Variance
0.173645208 -0.020833333 0.008575953
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Tests d’autocorrélation pour variables surfaciques
Test d'autocorrélation basé sur |'indice de Geary

Du lien entre Moran et Geary, on déduit les formules des moments de
I'indice de Geary

o free sampling

(251 + So)(n— 1) — 452

E(G) = 1,Var(G) = 2(n+1)52

@ non free sampling
E(G) = 1,n(n—2)(n—3)S3Var(G) = (n—1)51[n* —=3n+3 — (n —
1)b2]—%(n—l)Sg[n2+3n—6—(n2—n+2)b2]+55(,,2_3_(n_1)2b2)
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Tests d’autocorrélation pour variables surfaciques
Test d’autocorrélation basé sur I'indice de Geary

>geary.test (columbus$HOVAL, nb2listw(col.gal.nb),
randomisation=FALSE)
Geary’s C test under normality

data: columbus$HOVAL
weights: nb2listw(col.gal.nb)

Geary C statistic standard deviate = 1.7972, p-value = 0.03615

alternative hypothesis: Expectation greater than statistic

sample estimates:

Geary C statistic Expectation Variance
0.81754447 1.00000000 0.01030674

> geary.test(columbus$HOVAL, nb2listw(col.gal.nb),
randomisation=TRUE)
Geary’s C test under randomisation

data: columbus$HOVAL
weights: nb2listw(col.gal.nb)

Geary C statistic standard deviate = 1.7083, p-value = 0.04379

alternative hypothesis: Expectation greater than statistic

sample estimates:

Geary C statistic Expectation Variance
0.81754447 1.00000000 0.01140734
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Chap 6 : Tests Tests d’autocorrélation pour variables surfaciques

Test d'autocorrélation pour variable qualitative : test
gaussien

Si X est qualitative avec k modalités :

- le modele "free" : tirage aléatoire avec remise dans une population ayant
k groupes de proportions p1,- -, px connues : les X; sont indépendantes
de loi multinomiale.

- le modeéle "non free" : tirage aléatoire sans remise dans une population

ayant k groupes d'effectifs connus ny,--- , ng : la loi du n-uplet

(X1, -+, Xp) est la loi hypergéométrique conditionnelle aux effectifs de
groupe observés.

En pratique, p1,--- , px doivent étre estimées par les fréquences

empiriques. Dans le cas "non free”, notons que les lois marginales ne sont pas
indépendantes.
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Tests d’autocorrélation pour variables surfaciques
Test “join counts” pour variable dichotomique

Le modele " free sampling” suppose les X; iid Bernouilli B(1, p)
E(BB) = %50p2
4Var(BB) = p*(1 — p)[S1(1 — p) + S2p]
E(BW) = Sop(1 - p)
4Var(BW) = [451p(1 — p) + Sop(1 — p)(1 — 4p(1 — p))]
Notations :

1
So=D Wi St=75) (wjt+wi) S=2 (wiy +wy)?
7 7 7

Wi+:§ Wij»W+j:§ Wji
J J
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Tests d’autocorrélation pour variables surfaciques
Test “join counts” pour variable dichotomique
Le modele "non free sampling” suppose qu'il y a ng = > ; X; valeurs 1 et

n — ng valeurs 0, et que I'on fait un tirage sans remise
Sin® =npn—1)---(n—b+1),0na

So n(2)

E(BB) = > n(2)

(2) GO

_ ”L _oM" | B
4Var(BB) = [51( n(3) + (4))
(3) 534) s ng) Sont?

+ S(E )]

E) n<4))+ ORI
S2p
425Var(BB) = p(1 — p)[Si(1 — p) + Sop — 470F]
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Tests d’autocorrélation pour variables surfaciques
Test “join counts” pour variable dichotomique

> joincount.test(as.factor (HICRIME) ,nb2listw(col.gal.nb))
Join count test under nonfree sampling

data: as.factor (HICRIME)
weights: nb2listw(col.gal.nb)

Std. deviate for FALSE = 4.6176, p-value = 1.941e-06

alternative hypothesis: greater

sample estimates:

Same colour statistic Expectation Variance
9.4833333 6.2500000 0.4903158

Join count test under nonfree sampling

data: as.factor (HICRIME)
weights: nb2listw(col.gal.nb)

Std. deviate for TRUE = 4.9963, p-value = 2.921e-07

alternative hypothesis: greater

sample estimates:

Same colour statistic Expectation Variance
9.206349 5.750000 0.478553
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Tests d’autocorrélation pour variables surfaciques
Test “join counts” pour variable dichotomique

joincount.mc (HICRIME,nb2listw(col.gal.nb),nsim=100)
Monte-Carlo simulation of join-count statistic

data: HICRIME
weights: nb2listw(col.gal.nb)
number of simulations + 1: 101

Join-count statistic for faible = 9.4833, rank of observed statistic = 101, p-value = 0.009901
alternative hypothesis: greater
sample estimates:
mean of simulation variance of simulation
6.3177480 0.5678434

Monte-Carlo simulation of join-count statistic

data: HICRIME
weights: nb2listw(col.gal.nb)
number of simulations + 1: 101

Join-count statistic for fort = 9.2063, rank of observed statistic = 101, p-value = 0.009901
alternative hypothesis: greater
sample estimates:
mean of simulation variance of simulation
5.7360655 0.5681022

Christine Thomas-Agnan (TSE) Analyse statistique des données spatiales V 2 novembre 2012 16 / 30



Tests d’autocorrélation pour variables surfaciques
Pratique des tests d'autocorrélation spatiale

Choix entre “free sampling” et “non free sampling” :

- guidé par le contexte

- si X suit une loi F inconnue de variance finie, on a toujours la méme
espérance et le moment d'ordre deux vérifie E(/2) = E(Eg(/?)).

Choix entre [ et G :

- I'indice de Geary est plus sensible aux points aberrants

- I'approximation gaussienne est meilleure pour | que pour G
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Tests d’autocorrélation pour variables surfaciques
Test d'autocorrélation des résidus d'un modele linéaire
ordinaire

L'indice de Moran généralisé s'écrit comme l'indice de Moran appliqué aux
résidus du modele WLS : ceux-ci n'étant pas des observations mais des
estimations, il faut ajuster les calculs de moments dans le contexte “free
sampling”.

Dans le cas D = I, on montre que sous |'hypothése d'absence
d'autocorrélation spatiale avec une matrice de voisinage W

trA

E(/) = Tk

ol k est le nombre de colonnes de X et A= (X'X)~1X'WX.
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Chap 6 : Tests Tests d’autocorrélation pour variables surfaciques

Test d'autocorrélation des résidus d'un modeéle linéaire
ordinaire

> 1mmod=1m(HOVAL~CRIME+INC,data=columbus)
> 1m.morantest (lmmod,nb2listw(col.gal.nb))
Global Moran’s I for regression residuals

data:
model: 1m(formula = HOVAL ~ CRIME + INC, data = columbus)
weights: nb2listw(col.gal.nb)

Moran I statistic standard deviate = 2.1947, p-value = 0.01409

alternative hypothesis: greater

sample estimates:

Observed Moran’s I Expectation Variance
0.167370309 -0.034246629 0.008439035
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Tests d’homogénéité spatiale pour semis de points
Hypothese CSR

On dit qu'un processus ponctuel vérifie I' hypothése d'homogénéité
spatiale (hypothese CSR pour “complete spatial randomness”) si c’est un
processus de Poisson homogene.

Cette hypothése implique donc a la fois I'homogénéité de la répartition des
points mais aussi |'indépendance entre les observations dans des zones
disjointes.

Tester I'hypothése CSR est la premiére étape dans la modélisation d’un
processus ponctuel dans le sens ou si cela est le cas, le processus sera
entierement caractérisé par le réel A de la définition.

Si cela n'est pas le cas, c’est alors que le travail de modélisation peut
commencer.

Il existe de nombreux tests de CSR mais nous allons seulement développer
deux approches.
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Tests d’homogénéité spatiale pour semis de points
Test basé sur les quadrats

Diviser la fenétre d'observation en m quadrats, c’est a dire en cellules
rectangulaires ou carrées d'égale surface

Dénombrer les points du processus dans chaque cellule, notés
ne,k=1,....,m

Avec i = 7, on définit

- nk—ﬁ
e

| peut d’abord étre interprété comme le rapport entre la variance
empirique des effectifs ny et leur moyenne (coefficient de variation).
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Tests d’homogénéité spatiale pour semis de points
Test basé sur les quadrats

Sous I'hypothése CSR, les effectifs sont équidistribuées (méme surface), de
loi de Poisson et comme la moyenne d'une loi de Poisson est égale a sa
variance, | n'est autre que le ratio de deux estimateurs de la variance.
Conditionnellement au nombre total de points, (m — 1)/ n’est autre que le
x? de Pearson d’ajustement de la série des effectifs des quadrats.

Sous I'hypothese CSR, la loi de (m — 1)/ peut &tre approximée
asymptotiquement par une loi de x? 3 m — 1 degrés de liberté.
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Tests d’homogénéité spatiale pour semis de points
Test basé sur les quadrats

Interprétation :

@ lorsque [ est significativement grand et que I'homogénéité est
respectée, il denote une tendance a I'aggrégation, c'est a dire une
dépendance entre les points de type attraction.

@ Inversement, lorsque [ est significativement petit et que
['"homogénéité est respectée, il traduit une tendance a la régularité,
c'est a dire une dépendance entre les points de type répulsion.

Christine Thomas-Agnan (TSE) Analyse statistique des données spatiales V 2 novembre 2012 23 /30



Tests d’homogénéité spatiale pour semis de points
Test basé sur les quadrats

> poisson=rpoispp(10,win=window)
> quadrat.test(poisson)
Chi-squared test of CSR using quadrat counts

data: poisson
X-squared = 16.9478, df = 24, p-value = 0.8509

Quadrats: 5 by 5 grid of tiles

Test non significatif = non rejet
de CSR
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Tests d’homogénéité spatiale pour semis de points
Test basé sur les quadrats

> poisson_inhom=rpoispp(function(x,y){100*exp (-3*x)+100*exp (-
20,win=window)
> quadrat.test(poisson_inhom)

Chi-squared test of CSR using quadrat counts

data: poisson_inhom
X-squared = 652.0952, df = 24, p-value < 2.2e-16

Quadrats: 5 by 5 grid of tiles

Test significatif = rejet de CSR

21 - 3
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Tests d’homogénéité spatiale pour semis de points
Test basé sur les quadrats

> tt=quadrat.test(poisson)
> plot(tt)

A gauche les effectifs observés, a droite les effectifs estimés sous CSR, au

centre les résidus de Pearson.

38 38.845 38.334 38.336 38.832 38.:
-0.052 11 -0.7 -0.37 -1

38 38.834 38350 38.337 38.835 38
-0.052 -0.7 19 -0.21 -0.54

45 38.830 38.837 38.336 38.839 38.
11 -13 -0.21 -0.37 0.11

34 38341 3841 38.839 38341 38.
-0.7 0.43 0.43 0.11 0.43

36 38.331 38344 38.349 38.836 38.
-0.37 -1.2 0.92 17 -0.37
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Tests d’homogénéité spatiale pour semis de points
Diagnostic basé sur des simulations

Une autre approche pour évaluer I'hypothése CSR consiste a simuler M
réalisations d'un processus de Poisson homogene et de calculer des
caractéristiques du processus (fonctions F,G, K ou L, voir + loin) pour
chaque simulation.

On trace ensuite les enveloppes de ces courbes sur I'ensemble des
simulations et on évalue si la caractéristique observée sur |'échantillon
entre ou non dans ces enveloppes. Nous reviendrons sur cette méthode
apreés avoir défini ces caractéristiques.
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Tests d’homogénéité spatiale pour semis de points
Test de CSR basé sur la fonction F

La méthode suivante permet d’ évaluer qualitativement |'hypothése CSR
par des simulations. On simule M réalisations d'un processus de Poisson
homogene dans E et on calcule la fonction IA-_k(r) pour chaque simulation
k.

On détermine ensuite I'enveloppe supérieure Fy et inférieure F; par

M A M4
Fu(r) = max Fi(r), Fi(r) = min Fi(r).
Si la fonction I:_(r) de notre réalisation se trouve dans I'enveloppe, on en
déduit que le modele de Poisson homogene est compatible avec les
données. Pour le jeu de données cells (positions de cellules), on voit que la
fonction F en noir sur la figure suivante sort de I'enveloppe (en pointillés).
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Tests d’homogénéité spatiale pour semis de points
Test de CSR basé sur F

cells
o envelope(cells, Fest)
o ° @ |
3
o T .|
S
o N
° o
p=
3
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Tests d’homogénéité spatiale pour semis de points
Test de CSR basé sur G

cells

envelope(cells, Gest)
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Chap 7 : Régression spatiale pour variables surfaciques Catalogue
Contexte

Variable dépendante : vecteur aléatoire Y (quantitatif, univarié) observé
sur un nombre fini de zones représentées par leur centroide s;.

Variable indépendante : vecteur aléatoire X (quantitatif , multivarié de
dimension p), observé sur les mémes zones.

En général on suppose de plus que X et Y sont gaussiens.

Modele : Y = p1+ e avec p =E(Y | X) (d'otu E(e) =0 et X L Y),
Var(Y)=V.

En général, on dispose d'une seule réalisation, c'est a dire de |'observation
du couple (X, Y) en n sites.

Sans autre restriction sur ce modeéle, on a n observations pour estimer

n+ @ parameétres — nécéssité de réduire le nombre de parametres.
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Modélisation de la tendance

On exprime la tendance comme une fonction
@ des coordonnées géographiques
o de régresseurs + régresseurs spatialement décalés

@ une combinaison des deux
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Modele non spatial WLS : V diagonale

Y = XB + € avec E(¢) = 0, Var(e) = 0°D, oli D est une matrice
diagonale, D = [, correspondant au modele OLS.
Présence de D : I'hétéroscédasticité est fréquente dans les variables

spatiales.
exemple : T; (resp : 7;) est le taux de chomage observé (resp : théorique) dans la
zone i et P; est la population de la zone. Alors var(T;) = M donc méme si le

taux de chomage est constant, il faut prendre des poids sur Ia diagonale de D

. L1
proportionnels a 7

Christine Thomas-Agnan (TSE) Analyse statistique des données spatiales VI 29 octobre 2012 4 /59



Chap 7 : Régression spatiale pour variables surfaciques Catalogue

Estimateurs du maximum de vraisemblance dans le modele
WLS

B = (X'DX)"'X'Dly
= oA(X'D7IX)
= o?PDP',P=1I,— (X'D71X)"1xX'D™1
s2 _ (Y =XBYDTNY - XB)?
n—p
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Test d'autocorrélation spatiale des résidus du modele WLS

L'indice de Moran généralisé s'écrit comme l'indice de Moran appliqué aux
résidus du modele WLS : ceux-ci n'étant pas des observations mais des
estimations, il faut ajuster les calculs de moments dans le contexte “free
sampling”.

Dans le cas D = I,;, on montre que sous |'hypothese d'absence
d’'autocorrélation spatiale

trA
E(1) = Tk

ol k est le nombre de colonnes de X et A= (X'X)~1X'WX.
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Chap 7 : Régression spatiale pour variables surfaciques Catalogue

Test d'autocorrélation spatiale des résidus du modele WLS

Si k =1 (aucun régresseur), on retrouve la formule E(/) = —-1-.
Si k = 2 (un seul régresseur), on obtient E(/) = —1;1%, ou Ix est I'indice

de Moran pour la variable X.

f, 2
Var(l) = (- k)(nl_ S 2 B 2,(7t_A/)( ]

Christine Thomas-Agnan (TSE) Analyse statistique des données spatiales VI 29 octobre 2012 7 /59



Un catalogue de modéles

Les modeles spatiaux consistent a introduire une variable spatialement

décalée dans un modele OLS ou WLS pour introduire de I'autocorrélation
spatiale.

® 6 6 o6 o ¢

modele régressif croisé

modele LAG : spatial autorégressif

modele SDM : “spatial Durbin”

modele SEM : a erreurs spatialement corrélées
modele SAC : combine LAG et SEM

modele SARMA

modele CAR : conditionnel autorégressif
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Etude de cas : Columbus

Nous utiliserons pour illustrer les notions un jeu de données économiques
de Luc Anselin sur la ville de Columbus (Ohio, US) en 1980. Ce jeu de
trouve dans le package spdep au format .Rdata et dans le package
maptools au format .shp. La ville de Columbus est découpée en 49
quartiers pour lesquels on dispose de 18 attributs parmi lesquels nous
avons choisi

@ HOVAL valeur immobiliere en $ 1000
@ INC revenu moyen des ménages en $ 1000

@ CRIME nombre de cambriolages et vols de voitures pour 1000
habitants

On va chercher a expliquer la criminalité dans les quartiers par la valeur
immobiliere et le revenu des ménages.
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Chap 7 : Régression spatiale pour variables surfaciques Catalogue

Etude de cas : Columbus
La structure de voisinage est une matrice de contiguité de type “queen”
notée W

plot(columbus)
plot(col.gal.nb,coord,add=TRUE)
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Chap 7 ression spatiale pour variables surfaciques Catalogue

Etude de cas : Columbus

Ajustement d'un modele OLS

mod=1m(CRIME ~ INC + HOVAL, data = columbus)

Call:
1m(formula = CRIME ~ INC + HOVAL, data = columbus)
Residuals:

Min 1Q Median 3Q Max
-34.418 -6.388 -1.580 9.052 28.649
Coefficients:

Estimate Std. Error t value Pr(>|tl)

(Intercept) 68.6190 4.7355 14.490 < 2e-16
INC -1.5973 0.3341 -4.780 1.83e-05
HOVAL -0.2739 0.1032 -2.654 0.0109
Residual standard error: 11.43 on 46 degrees of freedom
Multiple R-squared: 0.5524, Adjusted R-squared: 0.5329

F-statistic: 28.39 on 2 and 46 DF, p-value: 9.34e-09
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Etude de cas : Columbus

Test de Moran des résidus de ce modele (test gaussien)

1m.morantest (mod,nb2listw(col.gal.nb))
Global Moran’s I for regression residuals

data:
model: lm(formula = CRIME ~ INC + HOVAL, data = columbus)
weights: col.listw

Moran I statistic standard deviate = 2.681, p-value = 0.00367

alternative hypothesis: greater

sample estimates:

Observed Moran’s I Expectation Variance
0.212374153 -0.033268284 0.008394853
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Le modele régressif croisé

Une premiere facon simple d’'introduire de I'interaction entre unités
spatiales est d’introduire une variable spatialement décalée parmi les
explicatives :

Y = XB+ WZ5 +e,

avec E(e) = 0,Var(e) = 02D, oli D est une matrice diagonale de
pondération.

L'observation Y pour une unité spatiale donnée est donc ainsi expliquée
par la valeur de X pour cette unité et par la moyenne des valeurs de Z
pour les unités voisines. Par exemple, la production d'une région peut étre
expliquée par la disponibilité du travail et par le montant du capital public
dans les zones voisines.
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Chap 7 : Régression spatiale pour variables surfaciques Catalogue

Le modele régressif croisé

wetV:
w=Xp+ WZs
et
V =o°D
L'ajustement de ce modele peut se faire par MCO. Attention : si W est

normalisée, il ne faut pas que la constante apparaisse a la fois dans X et
dans Z sous peine de non identifiabilité.
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Chap 7

ression spatiale pour variables surfaciques Catalogue

Le modele régressif croisé : application a Columbus

Im(formula = CRIME ~ INC + HOVAL + lag_INC + lag_HOVAL, data = columbus)

Residuals:
Min 1Q  Median 3Q Max
-36.2447 -7.6130 0.1881 7.8635 25.9821

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 74.0290 6.7218 11.013 3.13e-14
INC -1.1081 0.3750 -2.955 0.00501
HOVAL -0.2949 0.1014 -2.910 0.00565
lag_INC -1.3834 0.5592 -2.474 0.01729
lag_HOVAL 0.2262 0.2026 1.116 0.27041

Residual standard error: 10.94 on 44 degrees of freedom

Multiple R-squared: 0.6085, Adjusted R-squared: 0.5729
F-statistic: 17.09 on 4 and 44 DF, p-value: 1.581e-08
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Chap 7 : Régression spatiale pour variables surfaciques Catalogue

Modele spatial simultané autorégressif LAG

Le modele LAG propose de prendre en compte dans la moyenne de Y sur

une zone, outre les variables explicatives X, la moyenne de Y sur les zones
voisines

Y =pWY + X3 +e¢

WY est la variable endogene décalée et (I — pW)Y la variable endogeéne
filtrée.

Notons que si la matrice (/ — pW) est non singuliere, ce modele admet
I"écriture équivalente suivante dite forme réduite ou DGP

Y = (- pW)IXB+ (I — pW) e
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Chap 7 : Régression spatiale pour variables surfaciques Catalogue

Modele spatial simultané autorégressif LAG

petV:
p=(I—-pW)Xp

Var(Y) = o?{(I — pW')(I — pW)} 1.

Notons que cette variance implique une hétéroscédasticité méme dans le
cas ol les erreurs sont homoscédastiques.
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Modele SDM Spatial Durbin

Une combinaison du modele régressif croisé et du modeéle LAG donne le
modele dit “Spatial Durbin”

Y = pWY + XB + WZ5 + ¢

Forme réduite :

Y = (1 —pW) YXB+ WZ8) + (I — pW) te.

wetV:

p=(I—pW) (X5 + WZ5)

et
Var(Y) = o*{(I — pW')(I — pW)} 1.

Christine Thomas-Agnan (TSE) Analyse statistique des données spatiales VI 29 octobre 2012 18 / 59



Chap 7 : Régression spatiale pour variables surfaciques Catalogue

Modele a erreurs spatialement corrélées : SEM

Voyons a présent un autre modele dans lequel I'autocorrélation spatiale
intervient par |'intermédiaire d'un modeéle LAG sur les erreurs.
Y=XB+¢
e=AWe+ U,

ou U est un bruit blanc Le parameétre A mesure |'intensité de
I'autocorrélation spatiale entre les résidus.
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Chap 7 : Régression spatiale pour variables surfaciques Catalogue

Modele a erreurs spatialement corrélées : SEM

On a I'écriture équivalente
(I = 2AW)Y = = \W)X5+ U.

Notons que si la matrice (I — AW) est non singuliére, ce modeéle admet la
forme réduite suivante

Y =XB+ (- xw)tu
wetV:
p=Xp

Var(Y) = o?{(| = \W")(I = xW)} L.

Notons que cette variance implique une hétéroscédasticité (les éléments de
la diagonale ne sont pas constants) méme dans le cas ou les erreurs U
sont homoscédastiques.
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Modele général : SAC

Ce modele combine les modeéles LAG et SEM de la facon suivante

Y=pWY +X3B+¢€
e = AWhe+ U,

ou U est un bruit blanc
Forme réduite :

Y = (I —pWi) 2 XB + (1 — pWi) (1 = AWL) U

petV:
p=(-pWr)'Xp
et
V = [(/ = pWD) (I = AW,)(1 = AW,)(I — pWA)] !
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Modele SARMA

Le modele MA a un parametre s'écrit :
Yi=pu+p> ", wijej + €; ol € est un bruit blanc E(e) = 0, Var(e) = 02D
(D matrice diagonale).
alors V = o2(l, + pW)D(I, + pW)'.
On peut utiliser ce modele combiné avec un modeéle LAG
Y =pWY + X3 +e
e= (I — A\WL)u,

ou U est un bruit blanc
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Chap 7 : Régression spatiale pour variables surfaciques Catalogue

Modele conditionnel autorégressif CAR

Ce modele est défini par une contrainte de type markovien sur la loi
conditionnelle de Y; sachant la valeur de Y pour les autres sites

W ‘ Y17"' 7’/1'*17»/f+17"' 7YnNN(ﬂl+ZCU(Y1_M_])7le)7
j=1

N

ou
o C =(cj) et D= diag(r}, -+ ,72) doivent satisfaire les deux
conditions D~ C symétrique et D~1(/ — C) définie positive.
@ 1 s'exprime par une combinaison linéaire d'explicatives u = X3

De facon équivalente dans le cas gaussien Y ~ N(X3,72(I — C)1D)
Pour le modele CAR a un parametre C = pW avec W matrice de
voisinage, la variance s'écrit alors V = 72(I, — pW)~1D.
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Lien CAR-LAG

En faisant une hypothése gaussienne, on peut écrire le modele LAG
Y~ N((1 = pW)EXB, 02{(1 — pW')(I — pW)} )

et le modéle CAR
Y ~ N(XB,72(1 = C)71)

d'ou la méme structure de covariance en posant
C=p(W+ W)~ p?WW' et 0 = 7 mais des moyennes modélisées de
facon différente.
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Modele LAG : contrainte sur les coefficients

Il'y a dans ce modele des contraintes sur le paramétre p qui sont dues a la
nécéssité d'imposer la non singularité de | — pW. Soient wmin et wmax la
plus petite et la plus grande valeurs propres de la matrice de voisinage W.
Si W est symétrique,

est une condition suffisante de non singularité.
Si W normalisée, alors wmax = 1 et p € [0, 1] est une condition suffisante
de non singularité de I — pW.
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Columbus : conditions sur parametre p

La matrice W n'est pas symétrique mais est normalisée. Ses valeurs
propres sont

eigen(Wmat, symmetric

[1]

el
[11]
[16]
[21]
[26]
[31]
[36]
[41]
[46]

La

~ e

U
NN

-1

|
w

.000000e+00
.655969e-01
-5.
-4.
-4.
-3.
.852730e-01
.066596e-01
.468052e-01
.749353e-02

637492e-01
955955e-01
222511e-01
544676e-01

condition

» ©

RSN

sur le parametre p est donc —0.652 < p < 1

= FALSE,only.values = TRUE)$values

.687970e-01
.907270e-01
.508182e-01
.823929e-01
.122630e-01
.372218e-01
.721972e-01
.975947e-01

245939e-01
428778e-02

[ |
w S oo ©

-1

[

.388159e-01
.519546e-01
.361444e-01
.750630e-01
.889661e-01
.237003e-01
-2.
-1.

556928e-01
935817e-01

.089779e-01
.818743e-02

©

.748731e-01
-6.
-5.
-4.
-3.
-3.
-2.
-1.
-8.

8.

009133e-01
042972e-01
452039e-01
826030e-01
179893e-01
500000e-01
820426e-01
386006e-02
322744e-17

| !
w s oo o

-3.
-2.

|
[

.476441e-01
.873411e-01
.000000e-01
.418332e-01
.655755e-01

094258e-01
289888e-01

.704262e-01
.486559e-02
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EMV dans le modele LAG

On montre aisément que les estimateurs MCO sont biaisés dans ce modele
et c’est pourquoi on doit recourir au maximum de vraisemblance.

Sous I'hypothese de normalité des erreurs € ~ N(0,02/), avec la notation
A(p) = (I — pW), la vraisemblance L = L(y | p, o?) dans ce modele s'écrit

L= Frly) = () | det() |= £(e) | det(A(p) |
N N
~ ) | delA) |

1
= g | GEAD) |-

{53y — AlD) XBYAY ARy — Al) X)),
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Calcul de LL dans le modele LAG

D'ol la log-vraisemblance LL = log L(y | p,0?)

LL = —g log(27) — nlog(o) + log(det((/ — pW))

1
202

avec A(p) = (I — pW)

(y — Alp) ' XBY Alp) Alp)(y — A(p) " XB).
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EMV dans le modele LAG

Si I'on dérive par rapport a o, 5 et p, on peut obtenir I" expression
explicite suivante de & et 5 en fonction de p

52(0) = ~(y — Alp) " XB(0)) A Ay — Alp) " XB(p).
et

Blp) = (X' X)X A(p) Y.
avec A(p) = (I — pW)
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EMV dans le modele LAG

Lorsqu’on reporte ces expressions dans le log-vraisemblance, on obtient ce
qui s'appelle la log-vraisemblance concentrée qu'il reste a minimiser par
rapport a p et qui vaut a constante pres

log L(y | p) = log(detA(p))

5 108(y — Ap) " XBY Ap) A(p)(y — Alp) ' XB)/n.
avec A(p) = (I — pW)
Cette vraisemblance concentrée doit tre optimisée numériquement et le
probleme principal est celui de I'évaluation du terme en log déterminant
qui peut étre couteux lorsque le nombre de sites devient grand : il faut
alors recourir a des approximations de ce terme (il en existe plusieurs).
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Chap 7

ression spatiale pour variables surfaciques Modele LAG

Columbus : EMV du modele LAG

Call:lagsarlm(formula = CRIME ~ INC + HOVAL, data = columbus, listw = listw)

Residuals:
Min 1Q Median 3Q Max
-37.4497095 -5.4565566 0.0016389 6.7159553 24.7107975

Type: lag

Coefficients: (asymptotic standard errors)
Estimate Std. Error z value Pr(>|zl)

(Intercept) 46.851429  7.314754 6.4051 1.503e-10

INC -1.073533  0.310872 -3.4533 0.0005538

HOVAL -0.269997  0.090128 -2.9957 0.0027381

Rho: 0.40389 LR test value: 8.4179 p-value: 0.0037154
Asymptotic standard error: 0.12071 z-value: 3.3459 p-value: 0.00082027
Wald statistic: 11.195 p-value: 0.00082027

Log likelihood: -183.1683 for lag model

ML residual variance (sigma squared): 99.164, (sigma: 9.9581)
Number of observations: 49

Number of parameters estimated: 5

AIC: 376.34, (AIC for 1m: 382.75)

LM test for residual autocorrelation

test value: 0.19184 p-value: 0.66139
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Chap 7 : Régression spatiale pour variables surfaciques Modele LAG

Interprétation des coefficients dans le modele LAG

Dans un modeéle OLS linéaire ordinaire Y = X3 + ¢, les dérivées des
coordonnées de Y par rapport a celles de X sont données par ax = Bk,
pour tout i et k et 8y’ = 0, pour tout k et j # /.

By s interprete cIaSS|quement comme |'accroissement de E(Y') quand la
k-eme variable explicative augmente d'une unité toutes choses égales par
ailleurs. Plus précisément, I'augmentation d'une unité de xj

@ n’a aucun effet sur Yj pour j # i
@ a le méme effet sur Y; que I'augmentation d'une unité de x;/x sur Yy
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Interprétation des coefficients dans le modele LAG

L'écriture de LAG par composante est y; = > ¢_; Se(W)irx; + &, ol p est
le nombre de variables explicatives, x; est la t-eme colonne de la matrice
Xeté=(l—pW) le

Alors, les dérivées partielles de E(y;) par rapport a xj; sont

IE(yi)
6th

= S5:(W)jy.

On remarque d'abord que la dérivée croisée de la i-eme composante E(y;)
par rapport a xj; pour j # i n'est plus nécéssairement nulle mais égale a
Se(W)j.

On en déduit qu'un changement sur I'une des variables explicatives pour
I'individu i va affecter non seulement y; mais aussi tous les y; : un
changement de la variable explicative dans une unité spatiale peut se
répercuter sur les Y de toutes les autres unités.
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Chap 7 : Régression spatiale pour variables surfaciques Modéle LAG

Interprétation des coefficients dans le modele LAG

De plus, I'effet sur E(y;) de I'accroissement d’'une unité de la i-eme
composante de la t-eme variable explicative x;; n'est plus nécéssairement
constant sur les i car égal a S;(W);; . On définit alors trois mesures
résumant ces effets pour chaque variable explicative t :

L'impact direct moyen AD/ = %27:1 %ﬁ:’) mesure la moyenne de
I'effet de I'accroissement d'une unité de la variable t pour I'individu i sur
E(Y;) pour ce méme individu.

L'impact moyen total AT/ = %Zi,j ag)((j{,-)' mesure |'effet moyen sur
E(Y') de I'accroissement de x; d'une unité pour tous les individus. C'est la
moyenne sur les individus i de I'impact total de cet accroissement sur

E(Y;) qui est mesuré par 3 OE(yi)

oxjt -
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Interprétation des coefficients dans le modele LAG

L'impact indirect moyen ou “spillover” All = %Zi#j 8%5(%’/) mesure la
J;

moyenne de |'effet indirect sur chaque composante de E(Y). L'effet
indirect sur E(Y;) est mesuré par I'effet de I'accroissement d'une unité de
xj: pour tous les individus j # /.

L'impact moyen total est la somme de I'impact direct moyen et de
I'impact indirect moyen : AT/ = ADI + All

En raison de I'effet non linéaire de p, ces mesures d'impact sont des
fonctions non linéaires des paramétres : on recourt a des méthodes de
Monte Carlo pour tester leur significativité.
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Columbus : calcul des effets

$direct.eff
INC HOVAL
-1.1225155 -0.2823163

$indirect.eff
INC HOVAL
-0.6783818 -0.1706152

$total.eff

INC HOVAL
-1.8008973 -0.4529315

Comparer aux coefficients

Coefficients:
Estimate

INC -1.073533

HOVAL -0.269997
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Chap 7 : Régression spatiale pour variables surfaciques Modéle LAG

Les trois tests sur les coefficients

Il existe trois tests classiques pour tester Hy : § = 6y contre I'alternative
Ho : 6 # g, ou 6 peut-&tre soir I'un des paramétres (3 soit le paramétre p
o test de Wald : TW
@ test du rapport de vraisemblance LR
o test du multiplicateur de Lagrange LM
Ces trois tests sont asymptotiquement équivalents mais a distance finie on
a TW > LR > LM. Le test de Wald requiert I'estimation des parametres
sous |'hypothese alternative, le test du multiplicateur de Lagrange requiert

I'estimation des parametres sous I'hypothése nulle et le test du rapport de
vraisemblance requiert les deux estimations.
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Les trois tests sur les coefficients : graphique
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Le test du rapport de vraisemblance

6 estimateur du maximum de vraisemblance de 6 sous Hi
Sous Hy :
LRy = —2(LL(6) — LL(A)) — x3(1)
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Chap 7 : Régression spatiale pour variables surfaciques Modele LAG

Le test du score ou LM

ALL(6)

Fonction Score : 5(6p) = 50

Sous Hy
_ 52(90) 2

ou /(#) est ma matrice d'information de Fisher basée sur une observation.
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Chap 7 : Régression spatiale pour variables surfaciques Modele LAG
Le test de Wald

Le test de Wald est basé sur (§ — 6p)
Sous Hg

TWy =
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Chap 7 : Régression spatiale pour variables surfaciques Modele LAG

Le test du coefficient p : LM-lag

HO Z[)ZO

c’est un test du modéle OLS sous Hy contre le modéle alternatif LAG
on fait un test de type LM avec la statistique

€ Wy /5°]
Tsar

ou € résidus dAu modele AOLS, &2 variance résiduelle estimée par OLS et
Tear = [(WXB) P(WXB)] /6% + trace((W + W )W)

LMac =

Sous Hy
LMiac — x°(1)

Il existe une version robuste de ce test RLM; a¢.
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Columbus : le test de OLS contre LAG

Im.LMtests(ols_mod, col.listw, test="LMlag")

Lagrange multiplier diagnostics for spatial dependence

data:
model: 1m(formula = CRIME ~ INC + HOVAL, data = columbus)
weights: col.listw

LMlag = 7.8557, df = 1, p-value = 0.005066

Le test rejette le modele non spatial.
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Prédiction dans le modele LAG

Pour le calcul de Y; pour les unités spatiales i de I'échantillon, on dispose
de trois alternatives

O YC=(-pwW) X3

Q Y5 =XB+pwy

Q@ YBP = YTC _ Diag(Q) 1(Q — Diag(Q))(Y — YTE), o
Q= (I —pW)(I - pW).

La meilleure prédiction (BLUP) est donnée par YBP et Y75 a un efficacité
relative assez bonne; par contre Y 7€ est mauvais.
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Chap 7

ression spatiale pour variables sur

ciques

Modele LAG

Columbus : modele spatial Durbin

Call:lagsarlm(formula

data = columbus, listw = col.listw, type = "mixed")

Type: lag
Coefficients: (asymptotic

Estimate Std.
(Intercept) 45.592896 13.

INC -0.939088
HOVAL -0.299605
lag_INC -0.618375
lag_HOVAL 0.266615

Rho: 0.38251 LR test value: 4.1648 p-value: 0.041272

o

o oo

= CRIME ~ INC + HOVAL,

standard errors)

Error z value
128680 3.4728
338229 -2.7765
090843 -3.2980

.577052 -1.0716
.183971 1.4492

Pr(>lzl)

0.
0.
0.
0.
0.

0005151
0054950
0009736
2838954
1472760

Asymptotic standard error: 0.16237 z-value: 2.3557 p-value: 0.018488
Wald statistic: 5.5493 p-value: 0.018488

Log likelihood: -182.0161

for lag model

ML residual variance (sigma squared): 95.051, (sigma: 9.7494)

Number of observations: 49

Number of parameters estimated: 7

AIC: 378.03, (AIC for 1m:

380.2)

LM test for residual autocorrelation

test value: 0.101 p-value:

0.75063
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laolz G
Modele a erreurs spatialement corrélées : SEM

Rappel
Y=X3+¢

e=AWe+ U,

Il'y a dans ce modele des contraintes sur le parametre A qui sont les
mémes que les contraintes sur p dans le modele LAG.

Sil'on pose A(A) =/ — AW, on a alors Y = X3+ A(A\) e et

e =AY — XP).
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Chap 7 : Régression spatiale pour variables surfaciques Modéle SEM

Modele a erreurs spatialement corrélées : SEM

Sous I'hypothese de normalité des erreurs U ~ A(0,021), la vraisemblance
de Y s'écrit alors :

L=fly) = £()| det( )]

— f(e)det(A(N))
- el ) (A |
d'ou la log-vraisemblance
LL=1In(L) = —gln(27r)—gInJZ—i—In(det(A()\)))

— 5 (Y XB) AN AN(Y = XB)

Christine Thomas-Agnan (TSE) Analyse statistique des données spatiales VI 29 octobre 2012 47 / 59



laolz G
EMV dans le modele SEM

A ) fixé, la maximisation de la log-vraisemblance se fait de fagon
analytique et on obtient :

BN = (XA ANX) X (AN AN) Y

A2 - 1  wYA 2
5%(\) = - 1Y = XBA) [aony am

Lorsqu’on reporte ces expressions dans la log-vraisemblance, on obtient la
log-vraisemblance “concentrée” qu'il reste a3 minimiser par rapport a \ et
qui vaut a constante pres

n N
log L(y | A) = log(det((/ = AW)) — S log || ¥ = X5(A) oy ey -

Cette vraisemblance concentrée doit étre optimisée numériquement (pb du
terme en log déterminant)
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Chap 7

Columbus : EMV du modele SEM

ression spatiale pour variables surfaciques Modéle SEM

Call:
spautolm(formula = CRIME ~ INC + HOVAL, data = columbus, listw = col.listw)

Residuals:
Min 1Q Median 3Q Max
-34.45950 -6.21730 -0.69775 7.65256 24.23631

Coefficients:

Estimate Std. Error z value Pr(>|zl)
(Intercept) 61.053619 5.314875 11.4873 < 2.2e-16
INC -0.995473 0.337025 -2.9537 0.0031398
HOVAL -0.307979 0.092584 -3.3265 0.0008794

Lambda: 0.52089 LR test value: 6.4441 p-value: 0.011132

Log likelihood: -184.1552

ML residual variance (sigma squared): 99.98, (sigma: 9.999)
Number of observations: 49

Number of parameters estimated: 5

AIC: 378.31
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Chap 7

ression spatiale pour variables surfaciques Modéle SEM

Columbus : EMV du modele SEM, syntaxe alternative

Call:
errorsarlm(formula = CRIME ~ INC + HOVAL, data = columbus, listw = col.listw)

Residuals:
Min 1Q Median 3Q Max
-34.45950 -6.21730 -0.69775 7.65256 24.23631

Type: error

Coefficients: (asymptotic standard errors)
Estimate Std. Error z value Pr(>|zl)

(Intercept) 61.053618 5.314875 11.4873 < 2.2e-16

INC -0.995473 0.337025 -2.9537 0.0031398

HOVAL -0.307979 0.092584 -3.3265 0.0008794

Lambda: 0.52089 LR test value: 6.4441 p-value: 0.011132
Asymptotic standard error: 0.14129 z-value: 3.6868 p-value: 0.00022713
Wald statistic: 13.592 p-value: 0.00022713

Log likelihood: -184.1552 for error model

ML residual variance (sigma squared): 99.98, (sigma: 9.999)
Number of observations: 49

Number of parameters estimated: 5

AIC: 378.31, (AIC for 1lm: 382.75)

Notons que la syntaxe “spautolm” autorise des poids d'hétérsocédasticité contrairement a “errorsarlm”.
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laolz G
Le test LM du coefficient )\ : LM-err

HO :A=0

c’est un test du modéle OLS sous Hy contre le modeéle alternatif SEM
on fait un test de type LM avec la statistique

[ We/52)?

LMgrr = T
sem

oll Teem = tr[(W' + W)], € résidus du modele OLS, et 42 estimateur OLS
de o2.

Sous Hy
LMERR — Xz(].)

Il existe une version robuste de ce test RLMggg.
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laolz G
Columbus : test de OLM contre SEM

Lagrange multiplier diagnostics for spatial dependence
data:
model: 1lm(formula = CRIME ~ INC + HOVAL, data = columbus)
weights: col.listw
LMerr = 4.6111, df = 1, p-value = 0.03177

Ce test est moins significatif que le LM, 46 donc on va préferer un modele
LAG.

Christine Thomas-Agnan (TSE) Analyse statistique des données spatiales VI 29 octobre 2012 52 / 59



hoix de modele

Synthese sur les tests

RLMpac LMggrr FC
p=0 A=0 5=-)3

SARMA
p=A=0

SAC

y+XB+WX5+e

RLMgrr
A=0
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Stratégie par tests

Ajuster un modeéle WLS puis un modéle mixte et choisir
faire les tests LMEgrgr et LM ac
si aucun des deux n’est significatif, garder le modeéle de I'étape 1

©00O0

si un seul est significatif : si c'est LMggg, garder un modele SEM, si
c'est LM a¢, garder un modele LAG

©

si les deux sont significatifs, faire les tests RLMgrr et RLM a¢
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Stratégie par tests

Suite
si seul RLMggg est significatif, choisir SEM
si seul RLM| a¢ est significatif, choisir LAG

si les deux sont significatifs, choisir SAC

©00O0

si aucun, choisir LAG (resp SEM) lorsque LM a¢ est plus significatif
que LMggr (resp LMggg est plus significatif que LM ac)
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Stratégie par critéres

La stratégie par critére consiste a minimiser le critere d'Akaiké ou le critere
de Schwartz qui s'expriment en fonction de la log-vraisemblance et le
nombre de paramétres k

o Akaiké : AIC = —2log(L) + 2k
@ Schwartz : BIC = —2log(L) + klog(n)
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Columbus : choix de modele par tests

1m.LMtests(ols_mod, col.listw,test="all")
LMerr = 4.6111, df = 1, p-value = 0.03177
LMlag = 7.8557, df = 1, p-value = 0.005066
RLMerr = 0.0335, df = 1, p-value = 0.8547
RLMlag = 3.2781, df = 1, p-value = 0.07021

SARMA = 7.8892, df = 2, p-value = 0.01936

I'algorithme choisit le modele LAG.
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Choix de modele

Columbus : choix de modele par critere

AIC(ols_mod,ols_croise,lagmodel,semmod,durbin)
df AIC

ols_mod 4 382.7545

ols_croise 6 380.1970

lagmodel 5 376.3366

semmod 5 378.3104

durbin 7 378.0322

le critere d'Akaiké choisit le modele LAG.
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Conclusion

@ lorsqu'un test met en évidence de I'autocorrélation spatiale dans les
résidus d'un modele WLS, on peut commencer par introduire d'autres
variables exogénes ou des exogeénes spatialement décalées avant de se
tourner vers un modele spatial

@ comment articuler le choix de variables et le choix de famille de
modele?

@ probléeme de niveau pour les tests consécutifs
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