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Introduction Chap1 : Dimension spatiale

Données spatiales

Données spatiales ou géoréférencées : données pour lesquelles une
information géographique est attachée à chaque unité statistique.
L’information géographique est en général la position de l’unité sur
une carte ou dans un référentiel spatio-temporel, et peut par exemple
prendre la forme de latitude et longitude ou de coordonnées UTM.

Nécessité de faire interagir analyse statistique et cartographie

Un traitement statistique de telles données qui ignorerait cet aspect
ou l’intègrerait de façon inadéquate resulterait en une perte
d’information, des erreurs de spécifications, des estimations non
convergentes et non efficaces, des erreurs de prédiction.
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Introduction Chap1 : Dimension spatiale

Divers courants

La statistique spatiale rassemble divers courants (géostatistique,
économétrie spatiale, semis de points)

données de nature différente

problématiques et outils spécifiques

mais des points communs
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Introduction Chap1 : Dimension spatiale

Domaines d’application

Domaines scientifiques privilégiés d’application de la statistique spatiale

la géologie

la séismologie

la météorologie

l’économie

la géographie

l’épidémiologie

secteur industriel : l’industrie pétrolière

secteur tertiaire : géomarketing
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Introduction Chap1 : Dimension spatiale

Domaines d’application

Exemple en prospection pétrolière : prédire la quantité de pétrole
potentielle en un lieu donné en fonction de prélèvements effectués en
certains points répartis sur une zone pour optimiser l’emplacement des
forages.

Exemple en économie urbaine : l’ajustement de modèles hédoniques qui
expliquent le prix d’une transaction en fonction des caractéristiques du
bien immobilier mais aussi des caractéristiques socio-économiques ou
autres de leur lieu d’implantation permet de mieux comprendre ce qui
influence le marché immobilier et de proposer des modèles pour créer des
indices de prix.
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Introduction Chap1 : Dimension spatiale

Domaines d’application

Exemple en environnement : la production de cartes de prédictions de
niveaux de pollution utilise les outils de la géostatistique.

Exemple en hydrologie : la géostatistique permet de distinguer entre les
changements de la qualité de l’eau dus à des sources locales de pollution
et ceux dus à la diversité régionale des propriétés géologiques des nappes
phréatiques.
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Introduction Chap1 : Dimension spatiale

Domaines d’application

Exemple en épidémiologie : produire des cartes de niveau de risque lors
d’une épidémie

Exemple en géomarketing : définir des zones de chalandise, prédire les
flux de clients d’une zone géographiqe donnée vers un magasin donné.
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d’une épidémie
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Introduction Chap1 : Dimension spatiale

Champ aléatoire

Pour une localisation s, une caractéristique Xs est mesurée : on la
considère comme une réalisation X (s, ω) d’une variable aléatoire Xs . Le
champ aléatoire X (s, ω) est l’objet mathématique qui permet de modéliser
ces observations.

L’indice s varie dans une partie D de Rd . La dimension d varie de 1 à 3
dans les applications courantes.

On imagine donc que, pour un lieu s donné, il existe un univers de
réalisations possibles (pour chaque ω) de la caractéristique Xs mais dans la
réalité on observe généralement une seule réalisation de Xs et pour un
nombre fini de sites s. Pluralité de données due à une pluralité de lieux
mais non à une pluralité de réalisations sauf si on est dans le cas
d’observations répétées.
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Introduction Chap1 : Liens avec séries temporelles

Séries temporelles et champs aléatoires

Le champ aléatoire pour d = 1 correspond à la série temporelle, alors que
pour d = 2, il correspond au champ spatial. Mais les méthodes de séries
temporelles ne se résument pas à un cas particulier de la statistique
spatiale. Inversement, la statistique spatiale n’est pas une simple
généralisation des séries temporelles.
Elles partagent cependant deux caractéristiques : la dépendance et
l’hétérogénéité.

La dépendance :

ce qui se passe aujourd’hui est nécéssairement influencé par ce qui
s’est passé hier et dans une moindre mesure par un passé lointain :
c’est le phénomène de dépendance temporelle.

dépendance spatiale : les variables Xs et Xt sont d’autant plus
corrélées que la distance entre s et t est petite. On parle
d’autocorrélation spatiale.
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Introduction Chap1 : Liens avec séries temporelles

Séries temporelles et champs aléatoires

L’hétérogénéité :

dans le cas des séries temporelles, l’hypothèse de répartitions
marginales identiques est remise en question dans la mesure où le
phénomène peut présenter une évolution en moyenne résultant en une
non stationarité.

de même le champ spatial peut présenter une hétérogénéité spatiale :
la répartition marginale de Xs varie avec s.

Mais à la différence des séries temporelles, les notions de passé et de futur
n’ont pas leur pendant en spatial et il n’y a pas d’ordre naturel dans Rd .
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Introduction Chap 1 : Bénéfices prise en compte dimension spatiale

Avantages modélisation spatiale

Quels sont les avantages d’une modélisation adaptée aux données
spatiales ?

éviter les biais d’estimation des paramètres

éviter inefficacité

éviter biais de prédiction

modéliser les effets de débordements (spillovers)
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Introduction Chap 1 : Bénéfices prise en compte dimension spatiale

Illustration : biais et variance d’estimation

Géographie : région Midi-Pyrénées découpée en 283 pseudo-cantons
Voisinage : une unité spatiale est voisine d’une autre si les unités spatiales
partagent une frontière commune
On simule X selon N (µ = 40, σ = 10)
On simule Y selon Y = ρWY + βX + ε, où ε est un bruit blanc spatial et
WY désigne le vecteur des moyennes de la variable Y dans le voisinage de
chaque unité spatiale
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Introduction Chap 1 : Bénéfices prise en compte dimension spatiale

Illustration : biais et variance d’estimation

Le biais d’estimation du coefficient β est donné par
(X ′X )−1X ′(I − ρW )−1X − 1
La différence entre variance estimée dans le modèle OLS et le modèle LAG
est donnée par (X ′X )−1X ′((I − ρW )′(I − ρW ))−1X − 1
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Introduction Chap 1 : Bénéfices prise en compte dimension spatiale

Illustration : hétéroscédasticité

Distribution des éléments de la partie triangulaire supérieure de la matrice
de variance de Y dans ce modèle, donnée à facteur d’échelle près par :

((I − ρW )′(I − ρW ))−1
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Introduction Chap 2 : Divers types données spatiales

Trois grands types

Les grands types de données spatiales sont

les données ponctuelles ou de type géostatistique

les données surfaciques ou de type économétrie spatiale

les données de type semis de points.

Autres types

images (pixels)

données bilocalisées ou flux
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Introduction Chap 2 : Divers types données spatiales

Données ponctuelles ou de type géostatistique

La position observée est déterministe.
La position varie continuement dans l’espace, même si en pratique on ne
l’observe que de façon discrète en des points non nécéssairement sur grille
régulière.

Exemples : mesures de pluviométrie en des stations météo, concentration
en polluants en des stations de mesure.
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Introduction Chap 2 : Divers types données spatiales

Données surfaciques ou de type économétrie spatiale

La position observée est déterministe mais la donnée géographique est de
nature surfacique. Les données économiques sont souvent diffusées sur des
découpages administratifs d’un territoire.

Exemples : taux de chomage d’une commune, prix moyen des maisons
d’un quartier.
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Introduction Chap 2 : Divers types données spatiales

Données de type semis de points ou processus ponctuels
spatiaux

La position observée est aléatoire et à chaque position peut être attachée
(ou non) une ou des caractéristiques appelées marques.

Quelques exemples

la disposition de certaines espèces végétales dans une forêt,

les adresses de patients affectés d’une certaine maladie dans une
région,

la répartition de cellules dans un tissu biologique,

les emplacements des épicentres de secousses sismiques enregistrées,

la localisation de trésors archéologiques retrouvés sur un site
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Introduction Chap 2 : Divers types données spatiales

Les logiciels d’analyse spatiale

Cartographie : les SIG ou Geographic Information System : ARCINFO,
MAPINFO, ARCVIEW (version légère de ARCINFO), SAS/GIS,
GEOCONCEPT, CARTE ET BASE, ASTEROP, GRASS

Liens entre GIS et boites à outils statistiques : SAS avec SAS/GIS,
S+, peut être lié à ARCVIEW et à ARCINFO grâce à S+Gislink,
SAGE (Haining, Wise, Ma), avec ARCINFO, SPACESTAT (Anselin,
Bao)(langage GAUSS), avec ARCVIEW, MANET (Unwin, Hofman),
CDV avec TCL/TK (Dykes), XLISP-STAT (Brundson).

Boite à outils Matlab de spatialeconometrics.com (Le Sage),

Les packages de R :GeoXp (Toulouse), spdep, geoR, spatstat, etc.
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Introduction Chap 1 : Rudiments de cartographie

Coordonnées et projections

Pour dessiner une carte il faut

un système de coordonnées : des axes et une origine

un système de projection cartographique

Une projection est une correspondance entre les coordonnées
planimétriques X et Y d’un point, mesurées sur une grille régulière, et sa
latitude φ et longitude λ. Au besoin, l’altitude du point est mesurée au
dessus (du géöıde ou) du niveau zéro des mers local.

Christine Thomas-Agnan (TSE) Analyse statistique des données spatiales I 30 octobre 2012 20 / 44



Introduction Chap 1 : Rudiments de cartographie

Latitude et longitude

 

Latitude : mesure de l’angle φ par rapport à l’équateur.
Longitude : mesure de l’angle λ par rapport au méridien de référence.
Différentes unités : degrés-minutes-secondes, degrès-décimaux, radians,
grades.
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Introduction Chap 1 : Rudiments de cartographie

Datum géodésique

La surface réelle de la terre est patatöıde ou géöıde ; on l’approxime par un
ellipsöıde. Exemple : ellipsöıde de Clarke.
La donnée de cet ellipsöıde et de la projection constitue ce que l’on appelle
un “datum géodésique”ou CRS (coordinate reference system). Les
coordonnées d’un point sont mesurées sur l’ ellipsöıde de révolution de
référence, l’altitude du point est égale à la hauteur au dessus de cet
ellipsöıde, ses coordonnées planimétriques sont sa latitude et sa longitude.
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Introduction Chap 1 : Rudiments de cartographie

Datum géodésique

Il faut connâıtre les datum les plus classiques :

European Datum (ED) 50 : système européen unifié, avec comme
projection courante la projection UTM.

World Geodetic System (WGS84) : système mondial mis au point par
le Département de la Défense des Etats Unis et utilisé par le GPS,
avec comme projection courante la projection UTM.
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Introduction Chap 1 : Rudiments de cartographie

Conversions

Il est courant que l’on récupère des données géoréférencées dans un certain
système alors que le fond de carte dont on dispose est codé dans un autre
système. Il faut alors recourir à un convertisseur, par exemple Convers.

http://vtopo.free.fr/convers.htm

ou le package proj4 de R.
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Introduction Chap 1 : Rudiments de cartographie

Divers types de projection

La représentation de la surface terrestre sur un plan (la feuille de papier)
nécessite la définition d’une projection. La projection est la méthode de
réduction de la distorsion due à la rotondité de la terre appliquée sur une
surface plate. On distingue plusieurs sortes de projections

conique : le sommet du cône est dans l’axe des pôles et la tangence
avec la terre se fait suivant un parallèle,

cylindrique : la tangence avec la terre se fait suivant l’équateur,

azimutale : la projection se fait sur un plan tangent en un point ou
sécant en un cercle.
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Introduction Chap 1 : Rudiments de cartographie

Divers types de projection

Les projections les plus courantes sont :

la projections de Mercator : projection cylindrique (cylindre tangent à
la terre le long de l’équateur), utilisation limitée à des latitudes
inférieures a 70̊ .

la projection de Mercator Transverse Universelle : projection
cylindrique (cylindre tangent à la terre le long d’un méridien choisi),
limitée à 3̊ d’amplitude de part et d’autre du méridien d’origine, pour
minimiser les déformations en limite de fuseau. La terre est ainsi
divisée en 60 fuseaux de 6̊ . Utilisée par le GPS.

les projections Lambert : projections coniques (Lambert I et Lambert
I Carto (Nord), Lambert II et Lambert II Carto (Centre), Lambert III
et Lambert III Carto (Sud), Lambert IV et Lambert IV Carto (Corse),
Lambert Grand Champ, Lambert 93)
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Introduction Chap 1 : Rudiments de cartographie

Exemple : Vitoria

Si on utilise les contours de la province d’Alava dans l’ellipsoide du WGS84
et avec la projection Lambert Conformal Conic, et simultanément les
coordonnées de la ville de Votoria dans l’ellipsoide du WGS84 et avec la
projection de Mercator, on obtient

La fonction proj4string du package maptools permet de préciser le CRS.
Le package proj4 permet les conversions d’un système à l’autre.
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Introduction Chap 1 : Importation de données spatiales dans R

Diverses classes de données spatiales : package sp

La classe (nature) des objets spatiaux en R (réponse à la question ’class’)
dépends de la structure initiale des unités spatiales importées ainsi que de
package utilisé pour les importer.
Avec le package sp, on peut fabriquer des objets de classes suivantes :

les SpatialPolygonsDataFrame, si les unités spatiales sont définies
pas des contours, comme des limites territoriales (une commune, un
canton, un pays, un IRIS, etc).

les SpatialPointsDataFrame, si les unités spatiales sont définies par
des points comme c’est souvent le cas en géostatistique.

les SpatialPixelsDataFrame ou SpatialGridDataFrame, si les unités
spatiales correspondent à des pixels (diffèrent entre eux par la façon
dont les informations sont stockées).

les SpatialLinesDataFrame, si les objets sont des segments
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Introduction Chap 1 : Importation de données spatiales dans R

Diverses classes de données spatiales : package spatstat

Avec le package spatstat, on peut fabriquer des objets de classes
suivantes :

les ppp pour les semis de points (Point Patterns)

les owin pour les fenêtres

les im pour les images pixelisées
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Introduction Chap 1 : Importation de données spatiales dans R

Principaux types de formats géographiques

Les objets spatiaux sont créés dans R par importation de fichiers de divers
formats

format vectoriel : ESRI shapefile (importé avec la fonction
readShapePoly ou readShapeSpatial du package maptools)

format vectoriel : MAPINFO (importé avec la fonction readOGR du
package rgdal))

format raster pour les images (importé avec la fonction
readAsciiGrid du package maptools si format Acii initial, ou avec
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Introduction Chap 1 : Importation de données spatiales dans R

Format vectoriel : ESRI shapefile

ESRI=Environmental Systems Research Institute
Un ESRI shapefile est formé de :

un fichier principal (.shp) qui contient toute l’information liée à la
géométrie des objets décrits qui peuvent être : des points, des lignes
ou des polygones ;

un fichier (.shx) qui stocke l’index de la géométrie ;

un fichier dBASE (.dbf) pour les données attributaires (ou données
statistiques) ;

des fichiers facultatifs comme un fichier sur les datums/projections
(.prj).
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Introduction Chap 1 : Importation de données spatiales dans R

Importation d’un shapefile en SpatialPolygonsDataFrame

Le code ci-dessous importe un fichier shapefile qui contient les contours
géographiques et un certain nombre d’informations (taux de criminalité,
taux de chômage, etc.) des districts de la ville de Columbus aux
Etats-Unis.

>library(spdep)

>columbus <- readShapePoly(system.file("etc/shapes/columbus.shp",

package="spdep")[1])

>class(columbus)

[1] "SpatialPolygonsDataFrame"

attr(,"package")

[1] "sp"

> dim(columbus)

[1] 49 20

> head(columbus@data)

>plot(columbus)
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Introduction Chap 1 : Importation de données spatiales dans R

Les objets de type SpatialPolygonsDataFrame

Pour accéder et connâıtre la structure des variables d’intérêt d’un objet de
type SpatialPolygonsDataFrame :

str(columbus@data)

Enfin, pour afficher les contours géographiques :

plot(columbus,axes=TRUE)

title("Neighbourhoods in Columbus")
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Introduction Chap 1 : Importation de données spatiales dans R

Les objets de type SpatialPolygonsDataFrame

On peut également représenter des couleurs différentes selon une variable
d’intérêt. Par exemple, pour représenter les districts du “centre” en rouge
et les districts périphériques en “bleu”, on utilisera le code suivant :

CP<-as.numeric(as.factor(columbus@data$CP))

col.map<-c("royalblue2","red3")

plot(columbus,col=col.map[CP])

legend("topleft", legend = c("0","1"), cex = 0.8,

title = "Core-periphery dummy ",fill=col.map[1:2])
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Introduction Chap 1 : Importation de données spatiales dans R

Construction d’un objet de type SpatialPointsDataFrame

Le jeu de données contient des informations sur les prix de l’immobilier
dans les grandes villes de France.
Le code ci dessous construit d’abord un objet de type SpatialPoints qui
contient les coordonnées géographiques des observations :

library(GeoXp)

data(immob)

immob.sp = SpatialPoints(cbind(immob$longitude, immob$latitude))

class(immob.sp)

Ensuite, on associe à cet objet un jeu de caractéristiques des points afin de
construire un objet de type SpatialPointsDataFrame dont la
représentation peut se faire avec la fonction plot :

immob.spdf = SpatialPointsDataFrame(immob.sp, immob)

class(immob.spdf)

plot(immob.spdf)
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Introduction Chap 1 : Importation de données spatiales dans R

Construction d’un objet de type SpatialPixelsDataFrame

L’exemple ci-dessous montre un exemple de création et d’affichage d’objet
de type SpatialPixelsDataFrame.

data(meuse.grid)

m = SpatialPixelsDataFrame(points = meuse.grid[c("x", "y")],

data = meuse.grid)

class(m)

plot(m)
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Introduction Chap 1 : Importation de données spatiales dans R

Format vectoriel : MAPINFO

Le format MIF/MID est le format d’import-export de MapInfo, les formats
natifs de MapInfo étant les formats .DAT/.ID/.MAP/.TAB.

Les données sont réparties dans deux fichiers ASCII : le fichier MID
contient les attributs alphanumériques, à chaque fichier MID étant associé
un fichier MIF. Chaque ligne du fichier MID est associée à un objet
graphique du fichier MIF.
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Introduction Chap 1 : Importation de données spatiales dans R

Format vectoriel : MAPINFO

Le fichier MIF contient essentiellement les données graphiques et un
en-tête décrivant les paramètres suivants :

un numéro de version (A)

le caractère servant de séparateur des attributs alphanumériques (B),

le système de coordonnées (C).

le type de projection (C).

les paramètres de transformation des coordonnées (C),

la colonne des attributs qui sert d’index,

le nombre de colonnes des attributs alphanumériques c’est à dire le
nombre de champs définis dans la table (D),

le nom des colonnes des attributs ainsi que leur type (caractère,
numérique) et leur longueur (E).
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Introduction Chap 1 : Importation de données spatiales dans R

Importation d’un fichier MAPINFO : exemple

>library(rgdal)

> xy <- readOGR("departements_region.mif",

"departements_region")

OGR data source with driver: MapInfo File

Source: "departements_region.mif", layer:

"departements_region"

with 98 features and 7 fields

Feature type: wkbPolygon with 2 dimensions

> class(xy)

[1] "SpatialPolygonsDataFrame"

attr(,"package")

[1] "sp"
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Introduction Chap 1 : Importation de données spatiales dans R

Suite : carte choroplèthe de la population

> plotclr <- c("#EFF3FF", "#BDD7E7", "#6BAED6", "#3182BD",

"#08519C")

> breaks<-quantile(xy@data$PSDC,c(0,0.2,0.4,0.6,0.8,1))

> plot(xy,col=plotclr[findInterval(xy@data$PSDC, breaks,

all.inside=TRUE)], border=’grey’)

> legend("topleft", legend = c("[29972,230296.0[",

"[29972,351983.8[", "[351983.8,554093.4[", "[554093.4,966320.0[",

"[966320.0,2554449.0]"),

title = "Nombre d’habitants",fill=plotclr,cex=0.7)
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Introduction Chap 1 : Importation de données spatiales dans R

Suite : carte choroplèthe de la population
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Introduction Chap 1 : Importation de données spatiales dans R

Format raster

Importation d’un fichier au format Ascii .asc avec la fonction
readAsciiGrid du package maptools

> gr <- readAsciiGrid("pvgis_g13year00.asc")

> proj4string(gr)=CRS("+proj=longlat +ellps=WGS84")

> class(gr)

[1] "SpatialGridDataFrame"

attr(,"package")

[1] "sp"

> spplot(gr,axes=TRUE)
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Introduction Chap 1 : Importation de données spatiales dans R

Format raster : exemple ensoleillement en Europe
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Introduction Chap 1 : Importation de données spatiales dans R

Pour aller plus loin

Note : une fois le jeu de données importées dans R, il vaut mieux le sauver
au format .Rdata

save.image(file = "Departements.RData")

Pour aller plus loin sur manipulation d’objets spatiaux en R :

http://geostat-course.org/system/files/monday_slides.pdf
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Types et spécificités des données spatiales Chap 2 : Divers types de données spatiales

Les grands types

Rappelons les trois grands types de données géoréférencées :

les données ponctuelles ou de type géostatistique

les données surfaciques ou de type économétrie spatiale

les données de type semis de points.
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Types et spécificités des données spatiales Chap 2 : Divers types de données spatiales

Un exemple de données de type surfacique : Columbus

Le jeu de données économiques de Luc Anselin sur la ville de Columbus
(Ohio, US) en 1980 se trouve dans le package spdep au format .Rdata et
dans le package maptools au format .shp. La ville de Columbus est
découpée en 49 quartiers pour lesquels on dispose de 18 attributs parmi
lesquels nous avons choisi

HOVAL valeur immobilière en $ 1000

INC revenu moyen des ménages en $ 1000

CRIME nombre de cambriolages et vols de voitures pour 1000
habitants

On va chercher à expliquer la valeur immobilière par la criminalité dans les
quartiers et le revenu des ménages.
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Types et spécificités des données spatiales Chap 2 : Divers types de données spatiales

Un exemple de données de type surfacique : Columbus

library(classInt)

q5 <- classIntervals(columbus@data$INC , n=4, style="equal")

plot(columbus, col=findColours(q5, c("lightgreen", "darkgreen")))

Left : INC, center : CRIME, right : HOVAL
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Types et spécificités des données spatiales Chap 2 : Divers types de données spatiales

Un autre exemple de données de type surfacique : North
Carolina SIDS data

Lire

http://cran.r-project.org/web/packages/spdep/vignettes/sids.pdf

library(spdep)

nc_file <- system.file("etc/shapes/sids.shp", package = "spdep")

llCRS <- CRS("+proj=longlat +datum=NAD27")

nc <- readShapeSpatial(nc_file, ID = "FIPSNO", proj4string = llCRS)

l’objet ’nc’ contient les variables ainsi que les polygones.
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Types et spécificités des données spatiales Chap 2 : Divers types de données spatiales

Un autre exemple de données de type surfacique : North
Carolina SIDS data

Le jeu de données est au sujet du ’Suden Infant Death Syndrome’ : mort
subite du nourrisson. Nous retenons les attributs suivants, pour chaque
conté de Caroline du nord :

BIR74 births, 1974-78

SID74 SID deaths, 1974-78

NWBIR74 non-white births, 1974-78

BIR79 births, 1979-84

SID79 SID deaths, 1979-84

NWBIR79 non-white births, 1979-84
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Types et spécificités des données spatiales Chap 2 : Divers types de données spatiales

Un autre exemple de données de type surfacique : North
Carolina SIDS data

Histogram of nc@data$BIR74

nc@data$BIR74
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Types et spécificités des données spatiales Chap 2 : Divers types de données spatiales

Un exemple de données de type géostatistique : Baltimore

Le jeu de données Baltimore se trouve dans le package spdep au format
.Rdata. Il contient les caractéristiques de 211 transactions immobilières sur
des maisons dans la ville de Baltimore (Maryland) en 1978. Nous avons
choisi de conserver les attributs suivants

PRICE le prix de la maison

NROOM le nombre de pièces

NBATH le nombre de salles de bain

PATIO : 1 si patio, 0 sinon

FIREPL : 1 si cheminée, 0 sinon

AC : 1 si climatisation, 0 sinon

BMENT : 1 si cave, 0 sinon

NSTOR : nombre d’étages

AGE : age du batiment

LOTSZ : surface du terrain (en centaine de pieds carrés)

SQFT : surface de l’intérieur (en centaine de pieds carrés)
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Types et spécificités des données spatiales Chap 2 : Divers types de données spatiales

Un exemple de données de type géostatistique : Baltimore
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Types et spécificités des données spatiales Chap 2 : Divers types de données spatiales

Un exemple de semis de points : Pompiers de Toulouse

Cette base provient du SDIS 31 (Service Départmental d’Incendie et de
Secours). Elle contient les localisations et caractéristiques d’un échantillon
de sinistres durant le mois de janvier de l’année 2004 sur une zone autour
de la ville de Toulouse. La variable M contient la durée du sinistre en
“minutes sur le lieu du sinistre” multipliée par le nombre de pompiers
mobilisés.
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Types et spécificités des données spatiales Chap 2 : Divers types de données spatiales

Un exemple de semis de points : Pompiers de Toulouse

library(spatstat)

load("Pompiers_janvier+region.Rdata")

PP=ppp(sinistres_janvier$X,sinistres_janvier$Y,window=Region)

marks(PP)<-sinistres_janvier$M

plot(PP,main="Sinistres avec durée ")

PPu=unmark(PP)

plot(PPu,main="Sinistres dans Region de Toulouse",cex=0.4)

Sinistres dans Region de Toulouse
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Chap 3 : Modélisation des données ponctuelles ou surfaciques Modélisation

Notations

Une seule notation commune pour données ponctuelles ou surfaciques :
champ Xs observé en des localisations s1, · · · , sn

si données ponctuelles : Xs désigne la variable aléatoire de la
caractéristique X au point s

si données surfaciques, Xs désigne la variable aléatoire de la
caractéristique X dans l’unité spatiale dont le représentant est s

La loi du champ Xs est caractérisée par

les lois marginales de Xs pour chaque localisation s

les lois conjointes de vecteurs Xs1 , · · · ,Xsn pour un ensemble fini de
localisations s1, · · · , sn

Christine Thomas-Agnan (TSE) Analyse statistique des données spatiales II 30 octobre 2012 12 / 34



Chap 3 : Modélisation des données ponctuelles ou surfaciques Modélisation

Nombre d’observations

On observe généralement une seule réalisation de Xs et ce pour un nombre
fini de sites s sauf si on est dans le cas d’observations répétées : plusieurs
données mais une seule réalisation ! !
Solution : puiser des forces dans la continuité spatiale du phénomène et
dans la corrélation entre lieux voisins pour rendre cette inférence possible.
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Chap 3 : Modélisation des données ponctuelles ou surfaciques Modélisation

Décomposition classique

Xs champ aléatoire à valeurs réelles admettant un moment d’ordre un
fini : E(Xs) <∞.
Décomposition classique en deux parties

Xs = E(Xs) + (Xs − E(Xs))

Le terme déterministe E(Xs) s’appelle la tendance et modélise les
variations à grande échelle du phénomène décrit par ce champ. Le terme
aléatoire (Xs − E(Xs)) s’appelle la fluctuation et modélise les variations
du champ à petite échelle. Notons que la fluctuation a une moyenne nulle.
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Chap 3 : Modélisation des données ponctuelles ou surfaciques Modélisation

Part d’arbitraire dans la décomposition

Dans la pratique, cette décomposition en deux termes pour un phénomène
observé une fois n’est pas unique et c’est le choix du modélisateur
d’affecter certains aspects à la partie aléatoire ou à la partie déterministe :
une coupe transversale ne permet pas de distinguer entre hétérogénéité et
autocorrélation.
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Chap 3 : Modélisation des données ponctuelles ou surfaciques Modélisation

Décomposition classique

On dit qu’il y a une tendance lorsque E(Xs) est non constante dans
l’espace : on dit aussi que la moyenne est non stationnaire.
Pour comprendre ce découpage, il est bon de penser à une montagne : le
détail de la variation de l’élévation mesuré avec précision constitue le
champ ; on peut penser à l’allure de la montagne vue d’avion telle qu’elle
se découpe sur l’horizon comme à une tendance ; la différence entre
l’élévation précise et cette tendance représente alors les accidents de
terrain visibles de près.
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Chap 3 : Modélisation des données ponctuelles ou surfaciques Modélisation

Illustration

Champ (droite), tendance (centre) et fluctuation (gauche)

x y x y x y
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Chap 3 : Modélisation des données ponctuelles ou surfaciques Hétérogénéité

Hétérogénéité : définition

La répartition marginale du champ aléatoire Xs varie avec la localisation s.
On dit qu’il y a une tendance lorsque E(Xs) est non constante dans
l’espace (moyenne non stationnaire).
L’hétérogénéité spatiale sera prise en compte par l’usage de variables
explicatives pour modéliser la tendance. Certaines de ces variables peuvent
être spatiales de nature comme, par exemple, la distance à certains lieux
d’intérêt pour le problème.
Il n’est pas suffisant de prendre en compte ces variables dans la moyenne
pour évacuer totalement la structure spatiale du problème qui peut rester
présente à l’ordre deux.
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Chap 3 : Modélisation des données ponctuelles ou surfaciques Autocorrélation

Autocorrélation : intuition

Everything is related to everything else but closer things more so.
Si la tendance est spécifique au moment d’ordre un d’un champ,
l’autocorrélation concerne le moment d’ordre deux que l’on supposera
exister dans ce paragraphe : on dit alors que le champ est du second
ordre.

Pour les données spatiales, une corrélation peut se produire entre
Xs et Xt du fait de leur proximité géographique.
De façon qualitative, on parle d’autocorrélation spatiale positive pour une
variable lorsqu’il y a regroupement géographique de valeurs similaires de la
variable. De même, on parle d’autocorrélation spatiale négative pour une
variable lorsqu’il y a regroupement géographique de valeurs dissemblables
de la variable. Enfin, on parle d’absence d’autocorrélation pour une
variable lorsqu’il n’y a pas de relation entre la proximité géographique et le
degré de ressemblance des valeurs de la variable.
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Xs et Xt du fait de leur proximité géographique.
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variable lorsqu’il n’y a pas de relation entre la proximité géographique et le
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Chap 3 : Modélisation des données ponctuelles ou surfaciques Autocorrélation

Autocovariance : Illustration

Prenons pour illustrer cette notion l’exemple d’un champ dichotomique à
valeurs 0 ou 1 représentées respectivement par les couleurs blanche et
noire et constant sur les carrés d’une grille régulière.
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Chap 3 : Modélisation des données ponctuelles ou surfaciques Autocorrélation

Modélisation de l’autocorrélation

Deux approches selon le type

pour des données de type géostatistique, l’autocorrélation se modélise
par la fonction d’autocovariance ou le variogramme,

pour les données de type latticiel il se modélise par l’intermédiaire des
matrices de voisinage et se mesure par les indices de Moran et
Geary
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Chap 3 : Modélisation des données ponctuelles ou surfaciques Autocorrélation

Notions de stationnarité

La structure de covariance d’un champ du second ordre est définie par la
fonction d’autocovariance

R(s, t) = Cov(Xs ,Xt)

Pour modéliser un tel champ, une des hypothèses simplificatrices que l’on
est souvent amené à faire sur sa structure de covariance est celle de la
stationnarité.
La stationnarité stricte ou forte d’un champ suppose que la loi du
vecteur Xs1 , . . . ,Xsk est invariante par translation quel que soit le nombre
de points k et quelles que soient leurs positions s1, . . . sk i.e. Xs1 , . . . ,Xsk a
même loi que Xs1+h, . . . ,Xsk+h quel que soit h ∈ Rd .
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Chap 3 : Modélisation des données ponctuelles ou surfaciques Autocorrélation

Caractérisation mathématique des fonctions
d’autocovariance

Les fonctions d’autocovariance peuvent être caractérisées par la propriété
mathématique suivante :
Une fonction R(s, t) de R2 à valeurs dans R est une fonction
d’autocovariance d’un champ aléatoire réel du second ordre si et seulement
si elle est de type positif c’est à dire que quels que soit l’entier k , quels
que soient les k sites s1, . . . , sk et les réels a1, . . . , ak , on a

k∑
i=1

k∑
j=1

aiajR(si , sj) ≥ 0.
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Chap 3 : Modélisation des données ponctuelles ou surfaciques Autocorrélation

Notions de stationnarité

Un champ aléatoire Xs à valeurs réelles du second ordre est dit
stationnaire au second ordre ou au sens faible s’il existe un vecteur
µ ∈ R et une fonction
R : Rd 7→ R dite fonction d’autocovariance tels que

E(Xs) = µ (1)

Cov(Xs ,Xs+h) = R(h) (2)

Notons que dans ce cas, la fonction d’autocovariance est une fonction
d’une variable au lieu de deux. Il est clair que la stationnarité forte
implique la stationnarité faible. Dans le cas gaussien, ces deux notions sont
équivalentes puisque les moments d’ordre un et deux déterminent la
distribution.
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Chap 3 : Modélisation des données ponctuelles ou surfaciques Autocorrélation

Caractérisation mathématique des fonctions
d’autocovariance stationnaires

Une fonction R(s) de R à valeurs dans R est une fonction d’autocovariance
d’un champ aléatoire réel stationnaire du second ordre si et seulement si
elle est de type positif ce qui signifie dans ce cas que la fonction de deux
variables (s, t) 7→ R(s − t) est de type positif. Notons que le vocabulaire
“de type positif” est le même mais qu’il s’applique dans un cas à une
fonction de deux variables et dans l’autre à une fonction d’une variable.
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Chap 3 : Modélisation des données ponctuelles ou surfaciques Autocorrélation

Stationnarité intrinsèque

La stationnarité est souvent une hypothèse trop forte dans les applications
et une façon de l’affaiblir est de considérer la stationnarité intrinsèque.
On n’exige pas l’existence d’un moment d’ordre un pour le champ
lui-même mais seulement pour les accroissements du champ et l’on
demande que

E(Xs+h − Xs) = 0

Var(Xs+h − Xs) = 2γ(h) = E(Xs+h − Xs)2

La fonction γ s’appelle alors le semi-variogramme et 2γ le variogramme.
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Chap 3 : Modélisation des données ponctuelles ou surfaciques Autocorrélation

Stationnarité et stationnarité intrinsèque

Dans le cas où le champ est stationnaire (donc nécessairement
intrinsèquement stationnaire), il existe la relation suivante entre
variogramme et fonction d’autocovariance

Var(Xs+h − Xs) = Var(Xs+h) + Var(Xs)− 2Cov(Xs ,Xs+h)

= 2σ2 − 2R(h)

= 2γ(h)
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Chap 3 : Modélisation des données ponctuelles ou surfaciques Autocorrélation

Caractérisation mathématique des fonctions variogramme

Une fonction γ(t) de R vers R est le variogramme d’un champ aléatoire
intrinsèquement stationnaire si et seulement si −γ est conditionellement
de type positif d’ordre 1 i.e. pour tout entier k , pour tout ensemble de k
sites s1, . . . , sk et tout choix de réels a1, . . . , ak , on a

−
k∑

i=1

k∑
j=1

aiajγ(si − sj) ≥ 0,

dès que a1, . . . , ak satisfont la condition
∑k

i=1 ai = 0.
On parle alors d’un variogramme valide.
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Chap 3 : Modélisation des données ponctuelles ou surfaciques Autocorrélation

Notion d’isotropie

Un champ intrinsèquement stationnaire est isotrope si son variogramme
γ(h) ne dépend que de la norme de h. Dans ce cas la fonction
‖ h ‖7−→ E (Xs+h − Xs)2 = γ0(‖ h ‖) est appellée variogramme
omnidirectionnel isotrope.
On parle d’anisotropie lorsque l’hypothèse
d’isotropie n’est pas vérifiée. On peut alors représenter une fonction
variogramme univariée pour chaque direction : variogramme directionnel.
Si les lignes de niveau du variogramme sont des ellipses, on dit qu’il y a
anisotropie géométrique. On peut alors se ramener à une configuration
d’isotropie par une rotation composée par une affinité (A). Alors
γ(h) = γ0(‖ Ah ‖).
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Chap 3 : Modélisation des données ponctuelles ou surfaciques Autocorrélation

Illustration isotropie

Variogram directionnel lissé pour la variable PRICE dans le jeu de données
Baltimore : à gauche angle π/2 et à droite angle π/4
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Chap 3 : Modélisation des semis de points

Homogénéité d’un semis de points

La notion d’homogénéité est une notion d’ordre un : il s’agit de savoir si le
nombre moyen de points par unité de surface est constant au travers du
domaine. On parle aussi de façon équivalente de stationnarité.
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Chap 3 : Modélisation des semis de points

Interaction dans un semis de points

La notion d’interaction est une notion d’ordre deux : il s’agit de savoir si le
nombre (aléatoire) de points N(A) dans une partie de l’espace A est
dépendant ou indépendant (de façon probabiliste) du nombre de points
N(B) dans une autre partie B disjointe de A. Les phénomènes qui
présentent de l’attraction ou de la répulsion entre les points comportent
une dépendance entre N(A) et N(B).
Par exemple

les positions d’animaux sur un territoire présentent de la répulsion en
raison de la compétition pour la nourriture

les positions de personnes atteintes d’une maladie épidémique vont au
contraire montrer de l’attraction en raison de la contagion
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Chap 3 : Modélisation des semis de points

Interaction dans un semis de points : exemples

Gauche : régulier, Centre : Homogène, Droite : Agrégé
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Chap 3 : Modélisation des semis de points

Isotropie dans un semis de points

On dit qu’un semis de points est isotrope lorsque toutes ses
caractéristiques sont invariantes par rotation. Un exemple non isotrope
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Chap 4 : Outils statistiques pour données spatiales

Les packages de R

pour les données surfaciques : le package “spdep” par R. Bivand

pour les données ponctuelles : les packages “gstat”, “geoR” et
“geoRglm”

pour les semis de points : le package “SpatStat” de A. Baddeley et R.
Turner
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Chap 4 : Outils statistiques pour données spatiales Outils pour données ponctuelles

Variogramme isotrope : effet de pépite

Effet de pépite : remarquons que γ(0) = 0. On dit que le processus est
continu en moyenne quadratique si limh−→0 γ(h) = 0.
Cette condition équivaut à la continuité de la fonction d’autocovariance.
Si limh−→0 γ(h) = c0 6= 0 alors c0 est appellé effet pépite (nugget effect)
et témoigne d’une discontinuité dans le processus.
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Chap 4 : Outils statistiques pour données spatiales Outils pour données ponctuelles

Variogramme isotrope : seuil et portée

Seuil : Si Xs est stationnaire et si R(h) −→ 0 quand h −→ +∞ alors γ(h)
tends vers R(0) appellé seuil (sill) du semi-variogramme.

Portée : la plus petite valeur de ‖ r ‖ telle que γ(r(1 + ε)) = R(0) quel
que soit ε > 0 est appellée la portée (range) dans la direction r .

Portée pratique : la plus petite valeur de ‖ r ‖ telle que γ(r) = 0.95R(0)
est appellée la portée pratique dans la direction r .
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Chap 4 : Outils statistiques pour données spatiales Outils pour données ponctuelles

Illustration : seuil et portée
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Chap 4 : Outils statistiques pour données spatiales Outils pour données ponctuelles

Exemples de variogrammes isotropes : exponentiel sans
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0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

distance

(s
em

i−
)v

ar
io

gr
am

m
e

●

x y

Christine Thomas-Agnan (TSE) Analyse statistique des données spatiales III 31 octobre 2012 7 / 82



Chap 4 : Outils statistiques pour données spatiales Outils pour données ponctuelles

Nuage de variogramme

Soit X un champ centré intrinsèquement stationnaire.

Cas isotrope : omnidirectionnel
Soit hij la distance entre deux unités géographiques si et sj . Le
“Nuage de variogramme” est le nuage de points d’abscisse hij et
d’ordonnée 1

2 (Xsi − Xsj )
2.

Dans le “Nuage de variogramme” normalisé, les ordonnées sont
(Xsi
−Xsj

)2

βij
, où βij est la moyenne des (Xsi − Xsj )

2 pour les couples

distants de hij .

Cas non isotrope : directionnel
un graphique pour chaque direction e : les points d’abscisse h ont
pour ordonnées 1

2 (Xsi+he − Xsi )
2 chaque fois qu’il existe un j tel que

si + he = sj .
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Chap 4 : Outils statistiques pour données spatiales Outils pour données ponctuelles

Nuage de variogramme : exemple isotrope

Données Baltimore, nuage de variogramme omnidirectionnel.
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Chap 4 : Outils statistiques pour données spatiales Outils pour données ponctuelles

Nuage de variogramme : exemple non isotrope

Données Baltimore, nuage de variogramme unidirectionnel, direction π/2.
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Chap 4 : Outils statistiques pour données spatiales Matrices de poids

Matrices de poids

La matrice de poids est la version spatiale de l’opérateur retard en séries
temporelles.
Pour n sites géographiques, une matrice de poids W est de taille n × n et
son élément wij indique l’intensité de la proximité entre la zone i et la zone
j (elle spécifie la topologie du domaine).
Par convention wii = 0.
W n’est pas nécéssairement symétrique. Si W quelconque, (W + W ′)/2
est symétrique.
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Chap 4 : Outils statistiques pour données spatiales Matrices de poids

Matrices de poids : normalisation

On dit qu’une matrice de poids est normalisée si

n∑
j=1

wij = 1.

Utilité : cette contrainte permet de rendre les paramètres spatiaux
comparables entre divers modèles ; cette contrainte a une conséquence sur
le vecteur spatialement décalé (voir plus loin).
On peut normaliser une matrice W en W ∗ en divisant chaque ligne par
son total.
Attention : si W est symétrique, sa normalisée W ∗ n’est plus symétrique.
Attention : si W est normalisée, sa symétrisée (W + W ′)/2 n’est plus
normalisée
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Chap 4 : Outils statistiques pour données spatiales Matrices de poids

Variable spatialement décalée

Si X est une variable et W une matrice de poids, la variable spatialement
décalée associée à X est WX .

Si W est binaire, le terme i de WX est la somme des valeurs de X
associées aux voisins du site i .

Si W est normalisée, le terme i de WX est la moyenne (pondérée par la
proximité) des valeurs de X sur les voisins du site i .
Noter que même si X ne présente pas d’autocorrélation spatiale, WX va
en présenter.
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Chap 4 : Outils statistiques pour données spatiales Matrices de poids

Petit exemple
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Si z = (8 9 10 1 2)T , z̄ = (6 6 6 6 6)T

z− z̄ = (2 3 4 − 5 − 4)T

W × (z− z̄) =


0 1 0 0 0

1/3 0 1/3 1/3 0
0 1 0 0 0
0 1/2 0 0 1/2
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3
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3
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−5


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Chap 4 : Outils statistiques pour données spatiales Matrices de poids

Formats des matrices de poids sous R

Le type ’matrix’ n’est pas optimal pour stocker une matrice de voisinage
(ce sont plutôt des matrices creuses). Par exemple, pour les données SIDS

class(nc)

Le package spdep utilise plusieurs classes (types) de fichiers pour cela

la classe ’nb’

la classe ’listw’

la classe ’knn’

Il existe des fonctions de conversion d’un type à l’autre : ’knn2nb’,
’mat2listw’,’listw2mat’,’nb2listw’,’nb2mat’.
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Chap 4 : Outils statistiques pour données spatiales Matrices de poids

La classe nb

La fonction ’poly2nb’ permet de construire une matrice de voisinage basé
sur le principe suivant : les unités i et j sont voisines si elles partagent une
frontière commune. Avec les données sids :

wc.nb=poly2nb(nc)

class(wc.nb)

is.symmetric.nb(wc.nb)

str(wc.nb)

plot(nc, border=’grey’,xlim=c(-84.5,-82),ylim=c(35,36),

axes=TRUE)

coord=coordinates(nc)

plot(wc.nb,coord,add=TRUE)
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Chap 4 : Outils statistiques pour données spatiales Matrices de poids

La classe nb

Voisinage basé sur les frontières communes pour les données SIDS
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Chap 4 : Outils statistiques pour données spatiales Matrices de poids

Matrices de contiguité

Plus généralement les matrices de contiguité sont basées sur le partage
d’une frontière ou d’un sommet de polygone

1 2 3

4 0 5

6 7 8
- “rook” : au moins une frontière commune
0 voisin de 2, 7, 4, 5
- “bishop” : au moins un sommet commun
0 voisin de 1, 3, 6, 8
- “queen” : au moins une frontière ou un sommet commun
0 voisin de 1, 2 , 3, 4 , 5, 6, 7, 8
Dans spdep, les fonctions ’queencell’ et ’rookcell’ permettent de construire
certaines de ces matrices pour des unités disposées sur une grille.
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Chap 4 : Outils statistiques pour données spatiales Matrices de poids

Matrices basées sur un seuil de distance

- wij = 1(d(si , sj) ≤ seuil)
- wij = C

d(si ,sj )α

- wij = exp(−αd(si , sj))
remarque : dans certains cas, d(si , sj) peut être autre chose que la
distance géographique, par exemple d(si , sj) =| xi − xj |, où xi désigne une
caractéristique socio-économique pertinente.
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Chap 4 : Outils statistiques pour données spatiales Matrices de poids

Matrices basées sur un seuil de distance

Pour les données SIDS, voici la contruction d’une matrice basée sur un
seuil de 75km, l’option LONGLAT=TRUE permet d’utiliser une distance
kilométrique alors que les coordonnées sont exprimées en degrés.

wd.nb=dnearneigh(coord,0,75,longlat=TRUE)

class(wd.nb)

plot(nc, border=’grey’,xlim=c(-84.5,-82),ylim=c(35,36),

axes=TRUE)

coord=coordinates(nc)

plot(wd.nb,coord,add=TRUE)
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Chap 4 : Outils statistiques pour données spatiales Matrices de poids

Matrices basées sur un seuil de distance

Voisinage basé sur un seuil de distance de 75km pour les données SIDS
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Chap 4 : Outils statistiques pour données spatiales Matrices de poids

Matrices basées sur un seuil de distance

Exemple de code pour construire une matrice basée sur l’inverse de la
distance

wd.nb.2=dnearneigh(coord,0,1000,longlat=TRUE)

dlist <- nbdists(wd.nb.2, coord)

dlist <- lapply(dlist, function(x) 1/x)

wd.list<-nb2listw(wd.nb.2, glist=dlist)
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Chap 4 : Outils statistiques pour données spatiales Matrices de poids

Matrices basées sur un nombre de plus proches voisins

Matrice basée sur le plus proche voisin : wij = 1 si et seulement si sj est le
plus proche voisin de si .
Matrice basée sur les k plus proches voisins : étant donné un entier k ,
pour un site i , les indices j tels que wij = 1 sont ceux de son plus proche
voisin, de son deuxième plus proche voisin, etc... jusqu’à son k-ième plus
proche voisin.
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Chap 4 : Outils statistiques pour données spatiales Matrices de poids

La classe knn

Exemple de code pour construire et représenter une matrice basée sur un
nombre de plus proches voisins égal à 4

wv.knn=knearneigh(coord, k=4, longlat = TRUE)

class(wv.knn)

str(wv.knn)

plot(nc, border=’grey’,xlim=c(-84.5,-82),ylim=c(35,36),

axes=TRUE)

plot(knn2nb(wv.knn), coord, add=TRUE)
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Chap 4 : Outils statistiques pour données spatiales Matrices de poids

Matrices basées sur un nombre de plus proches voisins

Voisinage basé sur les quatre plus proches voisins pour les données SIDS
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Chap 4 : Outils statistiques pour données spatiales Matrices de poids

Variable spatialement décalée avec spdep

Ne pas faire de produit matriciel

nc$SID74_lag.B=lag.listw(nb2listw(knn2nb(wv.knn), style="B"),

nc$SID74)

nc$SID74_lag.W=lag.listw(nb2listw(knn2nb(wv.knn), style="W"),

nc$SID74)
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Chap 4 : Outils statistiques pour données spatiales Matrices de poids

Matrices basées sur triangulation de Delaunay

Triangulation de Delaunay : unique triangulation telle que le cercle
circonscrit à trois sommets quelconques ne contient aucun autre sommet.
Permet de construire une matrice : deux sites sont voisins si le segment les

joignant est une arête de la triangulation.

 

matrice de Delaunay pour la région de Toulouse
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Chap 4 : Outils statistiques pour données spatiales Matrices de poids

Matrices basées sur triangulation de Delaunay : syntaxe

w.tri=tri2nb(coord)

class(w.tri)

plot(nc, border=’grey’,axes=TRUE)

plot(w.tri, coord, add=TRUE)
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Chap 4 : Outils statistiques pour données spatiales Matrices de poids

Analyse de la matrice de Delaunay

summary(w.tri)
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Chap 4 : Outils statistiques pour données spatiales Matrices de poids

Comparaison avec matrice des 5 plus proches voisins
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Chap 4 : Outils statistiques pour données spatiales Matrices de poids

La classe listw

Lorsqu’on utilise une matrice de poids dans un modèle de régression
spatial, on a besoin de la mettre au format listw. Il faut alors préciser les
options style=”B” ou style= ”W”

B matrice binaire

W normalisation des lignes

Pour extraire la partie nb d’un objet listw, on utilisera la commande

$neighbours

. La commande

print

appliquée à un objet de type listw donne aussi des statistique utiles.
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Chap 4 : Outils statistiques pour données spatiales Matrices de poids

La classe listw : petit exemple

t=c(1,2,3,4)

u=c(3,2,5,1)

plot(t,u)

co=cbind(t,u)

W.knn=knearneigh(co,k=2,longlat=TRUE)

plot(knn2nb(W.knn), co, add=TRUE)

W.nb=knn2nb(W.knn)

W.listw1=nb2listw(W.nb,style="B")

str(W.listw1)

W.listw1$neighbours[]

W.listw1$weights[]

W.listw2=nb2listw(W.nb,style="W")

W.listw2$neighbours[]

W.listw2$weights[]
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Chap 4 : Outils statistiques pour données spatiales Indice de Moran

Indice de Moran : définition

Pour une matrice de poids W vérifiant wii = 0 et un champ
Xsi = Xi , i = 1, . . . n, le “I” de Moran est défini par :

I =
n

1′W 1

X ′WX

X ′X
=

∑
i,j wij (Xi−X̄ )(Xj−X̄ )∑

i,j wij∑
i (Xi−X̄ )2

n

C’est le rapport d’une sorte de covariance entre unités contigues à la
variance 7→ sorte de coefficient d’autocorrélation.
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Chap 4 : Outils statistiques pour données spatiales Indice de Moran

Indice de Moran : propriétés

I est indépendant des unités dans lesquelles X est exprimé

I est invariant à une symétrisation de la matrice W , (i.e.
W −→ (W + W ′)/2)

Attention : le I de Moran dépend du choix de la matrice W , et peut
être affecté par le niveau d’aggrégation (effet d’échelle) ainsi que par
la forme des unités spatiales
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Chap 4 : Outils statistiques pour données spatiales Indice de Moran

Indice de Moran : interprétation

Si X est centré, les valeurs de X de même signe et géographiquement
proches contribuent positivement à I.

les valeurs positives et fortes de I indiquent une autocorrélation
spatiale positive

les valeurs négatives et fortes de I indiquent une autocorrélation
spatiale négative

les valeurs proches de 0 indiquent une absence d’autocorrélation
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Chap 4 : Outils statistiques pour données spatiales Indice de Moran

Moran scatterplot

Le “Moran scatterplot” est un nuage de points de WX contre X , où X
est centrée et W normalisée.
Les deux propriétés X centrée et W normalisée impliquent que la moyenne
empirique de WX est égale à X̄ et donc à 0.
On peut superposer au nuage la droite de régression qui passe donc par
l’origine. La pente de celle-ci est égale à l’indice de Moran.
Utilisation :

détecter des points aberrants

aprécier le degré d’autocorrélation

non linéarité 7→ plusieurs régimes d’association spatiale.

Remarque : il est intéressant de normaliser X avant de faire le graphique
pour pouvoir ainsi comparer plusieurs moran plots entre eux.
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Chap 4 : Outils statistiques pour données spatiales Indice de Moran

Moran scatterplot : exemple
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Chap 4 : Outils statistiques pour données spatiales Indice de Moran

Le C de Geary

Le C de Geary est défini par

C =
n − 1

2
∑

i ,j wij

∑
i ,j wij(Xsi − Xsj )

2∑
i (Xsi − X̄ )2

Les valeurs faibles de C indiquent une autocorrélation spatiale positive et
les valeurs fortes de C une autocorrélation spatiale négative.
C est indépendant des unités dans lesquelles X est exprimé.
L’ indice de Geary ressemble à la statistique de Durbin Watson en séries
temporelles. Pour comparaison, la statistique de Durbin-Watson pour une
série temporelle centrée est donnée par
DW =

∑n
t=2(Xt − Xt−1)2/

∑n
t=1 X

2
t .
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Chap 4 : Outils statistiques pour données spatiales Indice de Moran

Lien entre l’indice de Moran et l’indice de Geary

G =
n − 1

2n
[

∑
i 6=j wij(Xi − X̄ )2 +

∑
i 6=j wij(Xj − X̄ )2∑

i (Xi − X̄ )2
]

− n − 1

n
I
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Chap 4 : Outils statistiques pour données spatiales Indices locaux

Mesures locales d’autocorrélation spatiale (LISA)

Sous les mêmes conditions que pour le I de Moran global, pour un site i ,
on définit un indice de Moran local par :

Ii = (Xi − X̄ )
∑
j 6=i

wij(Xj − X̄ )

Le numérateur du I de Moran global est alors la somme des Ii . Si de plus
le champ est standardisé, alors le I de Moran global est la moyenne des Ii .
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Chap 4 : Outils statistiques pour données spatiales Indices locaux

LISA : valeurs extrêmes

Les valeurs extrêmes de Ii indiquent une agglomération locale de valeurs
semblables : on considère que seules les valeurs éloignées de plus de deux
écarts types sont interprétables.
Si l’autocorrélation globale est positive, on distingue les cas suivants :

I de Moran local élevé et positif : agrégat local de valeurs extrêmes
avec voisins similaires ; on parle de ”Hot- spot” si dans quadrant
supérieur droit et ”Cold spot” si dans le quadrant inférieur gauche

I de Moran local élevé et négatif : ”High-Low” (resp : Low-High)
valeurs basses avec valeurs voisines similaires et fortes (resp : valeurs
fortes avec valeurs voisines similaires et basses) : ces deux dernières
catégories correspondent à des atypiques locaux.
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Chap 4 : Outils statistiques pour données spatiales Indices locaux

Statistiques ”join counts” pour variable dichotomique

Si Xi a deux modalités 0 et 1 avec : P(Xi = 1) = p, on introduit les
statistiques suivantes appellées ”join counts”

BB =
1

2

∑
i ,j

wijXiXj

BW =
1

2

∑
i ,j

wij(Xi − Xj)
2
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Chap 4 : Outils statistiques pour données spatiales Indices locaux

Statistiques “join counts” : exemple

joincount.multi(HICRIME, list)

Joincount Expected Variance z-value

low:low 34.000 29.337 18.638 1.0802

high:high 52.000 26.990 17.648 5.9534

high:low 29.000 58.673 26.041 -5.8149
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Chap 4 : Outils statistiques pour données spatiales Indices locaux

Statistiques “join counts” : exemple

s.HICRIME<-sample(HICRIME)

joincount.multi(s.HICRIME, list)

Joincount Expected Variance z-value

low:low 27.000 29.337 18.638 -0.5413

high:high 24.000 26.990 17.648 -0.7117

high:low 64.000 58.673 26.041 1.0438
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Chap 4 : Outils statistiques pour données spatiales Outils pour semis de points

Les domaines d’application des semis de points

Domaines classiques : épidémiologie, écologie, foresterie.
Quelques exemples

la disposition de certaines espèces végétales dans une forêt,

les adresses de patients affectés d’une certaine maladie dans une
région,

la répartition de cellules dans un tissu biologique,

les emplacements des épicentres de secousses sismiques enregistrées,

la localisation de trésors archéologiques retrouvés sur un site
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Chap 4 : Outils statistiques pour données spatiales Outils pour semis de points

Phénomènes à modéliser

Répartition alétoire de points dans R2 avec un nombre de points aléatoire.
Inhomogénéité spatiale. Des zones ont en moyenne plus de points que
les autres.
Interaction spatiale. La compétition pour la nourriture ou l’espace peut
engendrer de la répulsion entre les points. Au contraire, si l’on observe
l’occurence de maladies épidémiques, on va avoir de l’aggrégation.
Difficulté. une seule réalisation ⇒ confusion entre hétérogénéité et
interaction.
Des agrégats apparents peuvent être engendrés soit par une inhomogénéité
spatiale soit par de l’interaction entre les points.
Questions classiques : tester l’hypothèse CSR, détecter régularité ou
agrégation, ajuster un modèle, détecter agrégats.
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Chap 4 : Outils statistiques pour données spatiales Outils pour semis de points

Modèle mathématique : processus ponctuel

Configuration de n points de E ⊂ R2 : ensemble de n points non ordonné
x = {x1, · · · , xn}.
Espace des configurations (ou espace exponentiel) : l’espace Nlf des
sous-ensembles x localement finis de E , c’est à dire tels que le nombre de
points de x contenus dans tout borné de E est fini, muni d’une tribu Nlf .
Tribu Nlf sur Nlf : exemples d’évenements ”il y a au plus 50 points dans
la configuration”, ”les points de x sont distants d’au moins r”, ”il n’y a
aucun point dans B”, etc.
Un processus ponctuel est dit marqué lorsqu’à chaque position est
associée une variable aléatoire dite “marque” : par exemple, s’il s’agit
d’arbres dans une forêt, la marque peut être la taille ou le diamètre de
l’arbre.
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Chap 4 : Outils statistiques pour données spatiales Outils pour semis de points

Modèle mathématique : processus ponctuel

Deux définitions pour un processus ponctuel X :

une variable aléatoire à valeurs dans l’espace Nlf muni de Nlf

un ensemble aléatoire X de points Xi de E tel que le nombre de
points de E tombant dans A soit une variable aléatoire finie, pour
tout borélien borné A de E .

Un PP X est simple si le nombre de points de E tombant dans {x} pour
tout x ∈ E est presque surement égal à 0 ou 1.
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Chap 4 : Outils statistiques pour données spatiales Outils pour semis de points

Loi d’un processus ponctuel

La loi de probabilité induite sur Nlf muni de Nlf est la loi de X .
Pour un borélien B de R2, on notera NX (B) =

∑
xi∈x 1(xi ∈ B) le nombre

de points d’une configuration appartenant à B : pour tout B, N(B) est
une variable aléatoire.
La loi d’un processus ponctuel est définie par les probabilités P(X ∈ Y ),
pour tout Y ∈ Nlf : cette famille contient en particulier la famille des
probabilités fini-dimensionnelles P(NX (B1) = n1, . . . ,NX (Bk) = nk) qui
caractérisent entièrement la loi.
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Chap 4 : Outils statistiques pour données spatiales Outils pour semis de points

Loi d’un processus ponctuel

Nous adopterons ici une approche plus commode pour les applications (E
borné) consistant à définir une densité jointe pour les variables N, nombre
de points, et X1, . . . ,Xn, localisations des N points (Cressie, 1993,
p.622) : f

(
(x1, · · · , xn), n

)
. On a alors

∞∑
n=0

∫
En

f
(
(s1, · · · , sn), n

)
ds1 · · · dsn = 1.

De façon équivalente, on se donne

la famille des probabilités pn = P(NX (E ) = n), pour n ≥ 0

les densités gn sur En des configurations à n points (invariantes par
permutation)
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Chap 4 : Outils statistiques pour données spatiales Outils pour semis de points

Un exemple : le processus de Poisson homogène

Le processus de Poisson homogène PPP(λ) est le modèle de base en
théorie des processus ponctuels car il formalise le concept de points
répartis au hasard. Il est défini par les deux conditions suivantes pour E
borélien borné :

(i) il existe un réel λ > 0 tel que pour tout borélien A de R2, NX (A)
suit une loi de Poisson de moyenne λ | A |, où | A | désigne l’aire de A.

(ii) sachant que NX (A) = n, les n points du processus qui sont dans
A forment un échantillon de la loi uniforme sur A.
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Chap 4 : Outils statistiques pour données spatiales Outils pour semis de points

Propriétés du Poisson homogène

Les deux conditions (i) et (ii) impliquent la condition (iii) suivante :
pour deux boréliens A et B, les variables aléatoires NX (A) et NX (B) sont
indépendantes.
Le processus de Poisson homogène est stationnaire et isotrope.
On démontre que les probabilités fini-dimensionnelles de ce processus sont
données par

P (NX (B1) = n1, . . . ,NX (Bk) = nk) =

λn1+...+nk | B1 |n1 · · · | Bk |nk
n1! . . . nk !

exp(−
k∑

i=1

λ | Bk |).
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Chap 4 : Outils statistiques pour données spatiales Outils pour semis de points

Propriétés du Poisson homogène

Soit A un borélien borné de E , conditionnellement à {NX (A) = n}, les
points X1, · · · ,Xn de X dans A sont indépendants et uniformément
identiquement distribués

P(Xi ∈ B) = λ
aire(B)

aire(A)
,

pour tout borélien B inclus dans A.
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Chap 4 : Outils statistiques pour données spatiales Outils pour semis de points

Simulation d’un PPP homogène

window=owin(c(0,10),c(0,10))

poisson=rpoispp(1,win=window)

plot(poisson)
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Chap 4 : Outils statistiques pour données spatiales Outils pour semis de points

L’hypothèse CSR

CSR : complete spatial randomness

L’hypothèse CSR pour un PP est l’hypthèse que le PP est un processus de
Poisson homogène. Elle contient donc deux sous-hypothèses :

l’homogénéité de l’intensité

l’absence d’interaction
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Intensité

L’intensité est l’analogue pour le processus ponctuel de l’espérance pour
une variable aléatoire.
La mesure d’intensité est une mesure sur les boréliens B de R2 vérifiant

Λ(B) = E(N(B)),

de façon que Λ(B) représente le nombre moyen de points du processus
dans B.
Si le processus est stationnaire, cette mesure est proportionnelle à la
mesure de Lebesgue et le facteur de proportionalité, λ, appellé intensité,
représente le nombre moyen de points du processus par unité de surface.
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Fonction d’intensité

Plus généralement, si Λ est absolument continue par rapport à la mesure
de Lebesgue, il existe une fonction λ localement intégrable définie sur E
telle que pour tout borélien B,

Λ(B) =

∫
B
λ(x)dx .

Cette fonction λ porte le nom de fonction d’intensité du processus
ponctuel.
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Intensité et stationnarité

Si le processus est stationnaire, la fonction d’ intensité est constante.
Inversement, si le fonction d’intensité est constante, le processus est dit
stationnaire au premier ordre ou homogène (sinon, il est dit inhomogène).

Dans le cas du processus de Poisson homogène, la fonction d’intensité est
constante égale au paramètre λ de la définition.
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Estimation de l’intensité - cas homogène

Dans le cas d’un processus homogène d’intensité λ, un estimateur sans
biais de l’intensité est donné par

λ̂ =
N

|W |
,

où W est la fenêtre d’observation et N = N(W ) le nombre de points
observés dans cette fenêtre. Il coincide en fait avec l’estimateur du
maximum de vraisemblance dans le cas où le processus est un Poisson
homogène.

> summary(poisson)

Planar point pattern: 91 points

Average intensity 0.91 points per square unit

Window: rectangle = [0, 10]x[0, 10]units

Window area = 100 square units
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Le processus de Poisson inhomogène

Le processus de Poisson homogène ayant une intensité constante ne peut
servir à modéliser des phénomènes présentant une forte hétérogénéité
spatiale.
Etant donné une fonction d’intensité λ, on peut définir le processus de
Poisson X de mesure d’intensité λdx par les deux conditions suivantes

(i) le nombre de points N(A) de X dans tout borélien A de R2, suit
une loi de Poisson de moyenne λ(A),

(ii) les nombres de points de X dans k boréliens A1, . . . ,Ak disjoints
de R2 sont k variables aléatoires indépendantes.
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Le processus de Poisson inhomogène

Ainsi défini, ce processus n’est pas stationnaire sauf si l’intensité est
constante.
Conditionnellement à N = n, les n points X1, . . . ,Xn sont alors i.i.d..
Il existe une relation directe entre la fonction d’intensité du processus
ponctuel, λ(.), et la densité d-dimensionnelle f (.) de toute localisation Xi

conditionnellement à N :

∀s ∈ E , f (s) =
λ(s)∫

E λ(s)ν(ds)
.
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Simulation d’un PPP inhomogène

Pour simuler un processus de Poisson inhomogène dans spatstat, on utilise
à nouveau la fonction rpoispp, en précisant en input l’intensité soit comme
une fonction des coordonnées soit comme une image (le deuxième
argument précise le maximum de l’intensité).

window=owin(c(0,10),c(0,10))

poisson_inhom=rpoispp(function(x,y){10*exp(-3*x)+10*exp(-3*y)}

,20,win=window)

plot(poisson_inhom)

poisson_inhom2=rpoispp(Z)

plot(poisson_inhom2)
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Estimation de l’intensité - cas inhomogène

Dans le cas inhomogène, on peut utiliser un estimateur non paramétrique,
introduit par Diggle (1985)donné par

λ̂h(s) =

∑N
i=1 h

−dK
(
s−Xi
h

)∫
E h−dK

(
s−u
h

)
du

(1)

où le dénominateur est un terme de correction au bord nécessaire lorsque
le domaine d’observation est limité et où K est une fonction noyau.
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Estimation de l’intensité - cas inhomogène

L’ estimateur de Diggle est, de même qu’un estimateur non paramétrique
de densité, peu sensible au choix du noyau K . Le choix de la largeur de
bande ou fenêtre h permettant de minimiser l’erreur quadratique moyenne
intégrée

EQMI (h) = E
{∫

E

(
λ̂h(s)− λ(s)

)2
ds
}

se fait selon des méthodes similaires au cas de l’estimation de densité.
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Estimation de l’intensité - cas inhomogène

Dans spatstat, on peut évaluer cet estimateur avec un noyau gaussien par
la fonction density.ppp, l’output est alors une image de classe im que l’on
peut représenter avec plot. Avec les données Pompiers

h=5000

Z=density.ppp(PP,h, edge=TRUE)

plot(Z)

Z

2e
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06
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−
06

6e
−
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Interaction spatiale

Du fait de la propriété (ii), le processus de Poisson implique une absence
d’interaction entre les évènements.
Les caractéristiques du second ordre vont permettre de mettre en évidence
deux autres types de comportement. On distingue d’une part

les processus pour lesquels les évènements ont tendance à s’attirer :
aggrégation

ceux pour lesquels les évènements ont tendance à se repousser :
régularité.

Christine Thomas-Agnan (TSE) Analyse statistique des données spatiales III 31 octobre 2012 66 / 82



Chap 4 : Outils statistiques pour données spatiales Outils pour semis de points

Distance d’un point courant au plus proche voisin

Soit x un point de E qui ne figure pas nécéssairement dans une
configuration du PP X .
Pour un processus ponctuel X homogène, on définit

Fx(r) = P(d(x , {x1, · · · , xn} \ {x}) ≤ r).

Notons qu’en raison de l’homogénéité Fx ne dépends pas de x , c’est
pourquoi nous le noterons plus simplement F .
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Fonction F

F est la fonction de répartition de la distance au plus proche voisin et peut
aussi s’interpréter comme la mesure de ”l’espace vide” (c’est pourquoi on
l’appelle ”empty space function” en anglais) dans le sens suivant :
1− F (r) est la probabilité qu’une boule de centre 0 (ou un quelconque
point de E fixé) et de rayon r ne contienne aucun point de X .

Sous l’hypothèse CSR d’homogénéité spatiale sur R2, la fonction F a la
forme analytique suivante pour x > 0

F (x) = 1− exp(−πλx2).
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Estimateur de F

Pour estimer F , on utilise en général une grille fine de points définie sur E
qui permet d’approximer les distances au plus proche voisin. A gauche,
exemple simulé Poisson homogène, à droite, exemple simulé Poisson
inhomogène.
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Estimateur de F : graphique alternatif

Sous forme de probability-probability plot :
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Distance d’un point du PP à son plus proche voisin :
fonction G

Si cette fois, on s’intéresse à la distance entre un point du PP et son plus
proche voisin, on définit la fonction de répartition de ces distances G par

G (r) = P(d(x , {x1, · · · , xn} \ {x}) ≤ r | x ∈ X ).

Un estimateur classique de G est donné par la fonction de répartition
empirique définie par

Ĝ (r) =
1

N

N∑
i=1

1(d(xi , xj(i)) ≤ r),

où xj(i) est le point de X le plus proche de xi .
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Fonction J

A partir de F et G , on peut définir la fonction J par

J(r) =
1− G (r)

1− F (r)
.

J = 1 correspond au cas d’un processus poissonnien.
J > 1 indique une tendance à la régularité et J < 1 à l’aggrégation.
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Moment factoriel d’ordre 2

De même que l’on a introduit la mesure d’intensité pour le moment
d’ordre 1, le rôle du moment d’ordre 2 est joué par la mesure de moment
factoriel d’ordre 2, donnée pour tous boréliens B1 et B2 de R2 par

α2(B1 × B2) = E(N(B1)N(B2))− Λ(B1 ∩ B2).

Lorsque cette mesure est absolument continue par rapport à la mesure de
Lebesgue, on note ρ2 sa densité, appellée densité d’intensité d’ordre 2.
Pour un PP stationnaire, la fonction ρ2(x , y) ne dépends que de x − y .
Si de plus le PP est isotrope, elle ne dépends que de ‖ x − y ‖.
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Fonction de corrélation des paires

A partir de ρ2, on définit la fonction de corrélation des paires g par

g(x , y) =
ρ2(x , y)

λ(x)λ(y)
.

Fonction g et interaction :
Pour un PP de Poisson, on a g(x , y) = 1.
Si g(x , y) > 1, cela indique que pour ce PP, il est plus probable d’observer
un couple de points en x et y que pour un PP de Poisson ayant la même
intensité.
Si le PP est stationnaire et isotrope, g est une fonction de r =‖ x − y ‖ ;
g(r) > 1 indique une tendance à l’aggrégation pour des points à distance
r , et inversement, g(r) < 1 indique une tendance à la répulsion pour des
points à distance r .
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Fonction K de Ripley

Une façon alternative de caractériser les propriétés du second ordre est au
travers de la fonction K de Ripley et de la fonction L qui lui est associée.
Pour un PP stationnaire, introduisons la mesure κ, appellée mesure des
moments réduits d’ordre deux, pour un borélien B par

κ(B) =
1

λ2

∫
B
ρ2(x)dx .

Si de plus le PP est isotrope, en prenant pour B une boule B(0, r) de
centre l’origine et de rayon r , la fonction K de Ripley est définie par

K (r) = κ(B(0, r)).

K (r) peut aussi s’interpréter comme le nombre moyen de points du PP
dans une boule centrée en un des points du PP, horsmis le centre
lui-même.
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Fonction L

Pour un PP de Poisson homogène, K (r) = πr2 et ceci engendre une autre
méthode de comparaison avec un modèle de Poisson.
Pour faciliter la comparaison et aussi pour réduire la variance, il est
d’usage de renormaliser la fonction K en définissant la fonction L par

L(r) = (
K (r)

π
)1/2.

Pour le PP de Poisson homogène, la fonction L est donc égale à r .
Lorsque L(r)− r > 0, cela indique un phénomène d’aggrégation pour des
distances inférieures ou égales à r , et lorsque L(r)− r > 0, cela indique un
phénomène de régularité pour des distances inférieures ou égales à r .
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Relations entre g , ρ2 et K

Pour un PP stationnaire et isotrope, les relations suivantes existent entre
g , ρ2 et K :

g(r) =
ρ2(r)

λ2
=

K ′(r)

2πr

K (r) =
2π

λ2

∫ r

0
uρ2(u)du.
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Estimateur de g

Pour estimer g , on peut commencer par estimer ρ2 par un estimateur à
noyau de la densité incluant une correction de bord (diverses corrections
existent).
On peut alors en déduire un estimateur de la fonction de corrélation des
paires en divisant par λ̂(x)λ̂(y), où λ̂ est l’estimateur de Diggle de
l’intensité.
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Estimateur de g

La figure suivante montre un estimateur de la fonction de corrélation des
paires pour les données cells à gauche et redwood à droite.
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Estimateur de K

On peut estimer directement la fonction K par

K̂ (r) =
∑

x∈X ,y∈W	r

1(x − y ∈ B(0, r))

λ̂(x)λ̂(y)
,

où W	r désigne l’ensemble des points de la fenêtre W tels que la boule
centré en ce point et de rayon r soit entièrement incluse dans W .
D’autres formules existent mais consistent essentiellement à faire d’autres
corrections de bord.
Notons que les relations entre g et K permettent aussi de déduire un
estimateur de g à partir d’un estimateur de K .
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Estimateur de K

La figure suivante présente des estimateurs des fonctions de Ripley pour
les données cells et redwood et l’on voit bien à nouveau la différence de
comportement entre processus régulier et aggrégé.
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Estimateur de K pour les données Pompiers
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Chap 5 : Introduction à GeoXp

Le package GeoXp

Le module ou “package” GeoXp du logiciel R, disponible sur le site CRAN,
a été développé à l’Université des Sciences Sociales de Toulouse pour
constituer un outil d’analyse exploratoire spatiale, complémentaire de
divers autres packages de R, plus orientés vers la modélisation de données
spatiales.
Depuis la version 1.5.0, les fonctions de GeoXp travaillent sur des objets
de type SpatialXXXDataFrame, c’est à dire comportant en sus des variables
d’intérêt, une information géographiques sur les unités spatiales.
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Documentation sur GeoXp

Une fois le package installé et chargé dans la session de travail, l’utilisateur
pourra consulter la notice en anglais disponible avec le package en
exécutant la commande suivante :

vignette("presentation_geoxp")
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Principe d’interactivité de GeoXp

GeoXp lie de façon dynamique des graphiques statistiques avec une carte
Nature des graphiques statistiques

classiques : histogrammes, bôıtes à moustaches, diagramme de
dispersion, courbe Lorentz, etc.

spécifiquement spatiaux : nuage de variogramme, diagramme de
Moran
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Principe d’interactivité de GeoXp

Lien dynamique bilatéral

La sélection d’un point ou d’une zone sur la carte résulte en la mise
en évidence des éléments correspondants du graphique statistique
(changement couleur et/ou symbole)

La sélection d’un élément du graphique statistique résulte en la mise
évidence des points ou zones correspondantes sur la carte
(changement couleur et/ou symbole)

La sélection peut se faire par point ou par polygone.
La mise en évidence de points ou zones sur un graphique se fait par un
changement de couleur et/ou symbole.
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Exemple : histogramme

Coût par élève : sites sélectionnés par clic de souris sur les barres de
l’histogramme et représentés en rouge sur la carte.

⇒
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Exemple : histogramme

Coût par élève : sites sélectionnés par clic de souris sur les barres de
l’histogramme et représentés en rouge sur la carte.
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Chap 5 : Introduction à GeoXp

Exemple : histogramme

Coût par élève : sites sélectionnés point par point ou par polygone sur la
carte et représentés en rouge sur l’histogramme.

⇒
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Exemple : histogramme
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Trois fenêtres

L’appel à une des fonctions GeoXp fait apparâıtre trois fenêtres : une
fenêtre pour l’affichage du graphique statistique, une fenêtre pour
l’affichage de la carte et une fenêtre “menu”. L’utilisateur doit d’abord
choisir dans le menu le graphique sur lequel il désire sélectionner
(graphique statistique ou carte), ce qui a pour résultat de rendre ce
graphique actif.
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Exemple de syntaxe

Le premier argument renseigne un objet de type SpatialXXXDataFrame et
le second argument le (ou les) nom de la variable à étudier.
Exemple d’appel :

histomap(immob.spdf,"prix.vente")
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Les cartes de GeoXp

Les cartes produites par GeoXp sont rudimentaires car l’objectif n’est pas
la cartographie mais l’analyse interactive entre carte et graphique
statistique.

Néanmoins on peut améliorer l’aspect des cartes si l’objet est de type
SpatialPolygonsDataFrame ou si l’on dispose d’un objet de type
SpatialPointsDataFrame et d’un fond de carte. L’option d’affichage du
fond de carte est accessible depuis le menu.

On peut donner un étiquetage ou label à chaque observation, par exemple
le nom ou le code de la zone. Pour cela, il faut que row.names(objet) soit
non nul. En utilisant l’option identify=TRUE des fonctions de GeoXp, les
étiquettes des points sélectionnés apparaissent alors sur la carte à l’issue
d’une sélection.
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Options

Que ce soit pour les cartes ou les graphiques statistiques, il y a diverses
options qui permettent de modifier leur apparence, par exemple

la sélection sur une barre d’histogramme peut être représentée par
une coloration différente (option col=),

la sélection d’un point sur la carte peut être représentée par un
symbole différent (option pch=).
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La sélection

L’utilisateur choisit le type de sélection qu’il désire faire sur le graphique
actif (par points, par polygone, barre, etc) et exécute ensuite cette
sélection. Un click droit de la souris fait apparâıtre le bouton “stop” qui
permet de terminer une sélection. L’utilisateur peut sélectionner des
éléments de la carte avec la souris de deux façons différentes :

soit un nombre fini de points non connu à l’avance,

soit l’ensemble des points contenus dans un ou plusieurs polygones :
l’utilisateur saisit alors les sommets du ou des polygones avec la souris
et termine à nouveau par un click droit.
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La sélection

Pour les sélections sur le graphique statistique, plusieurs cas :

Dans le cas d’un histogramme pour une variable quantitative ou d’un
diagramme en barre pour une variable qualitative, la selection permet
de choisir une ou plusieurs barres de l’histogramme, non
nécéssairement contigües.

Dans le cas de la courbe de densité, la sélection porte sur un ou des
intervalles sur l’axe des abscisses.

Dans le cas des bôıtes à moustaches, la sélection peut porter soit sur
les points atypiques, soit sur un ou des quartiles.

Dans le cas des diagrammes de dispersion, la sélection porte
simplement sur un sous ensemble de points et peut se faire comme
pour la carte soit sur un nombre fini de points non connu à l’avance
soit sur l’ensemble des points contenus dans un polygone.
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Quitter le menu et sauvegarder la sélection

La dernière ligne du menu contient les cases “Save results” et “Exit
without saving ” qui permettent de quitter la fonction.

NB : tant que l’utilisateur n’aura pas cliqué sur une de ces cases, il ne
pourra pas ouvrir une autre fonction de GeoXp.

Si l’utilisateur a choisi la case “Save results”, cela a pour effet de créer un
objet de type numeric, appelé last.select et qui contient les indices des
dernières unités spatiales sélectionnées qui peut être réutilisé dans des
analyses ultérieures, par exemple pour caractériser la zone sélectionnée.
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Corriger une sélection

L’utilisateur peut corriger toute sélection en cours sans avoir à redémarrer
le processus à zéro, c’est à dire qu’il peut déselectionner un point
sélectionné par erreur.

De même, il peut modifier une sélection par ajout ou soustraction après en
avoir constaté les effets sur l’autre graphique sans avoir à sortir et rappeler
la fonction.

Le graphique non actif est actualisé à mesure de la sélection.
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Graphique supplémentaire

L’utilisateur a la possibilité de faire un graphique supplémentaire choisi
parmi : histogramme, diagramme en barre, nuage de points

Mais avec une interactivité unilatérale : les sélections faites sur le
premier graphique ou sur la carte se répercutent sur le graphique
supplémentaire mais on ne peut pas sélectionner sur ce dernier.

Les variables proposées sont toutes celles contenues dans objet@data.
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Label

On peut mettre un label ou étiquette sur les sites sélectionnés (nom ou
code de la zone ou autre caractéristique). Pour cela on utilise l’option
identify=TRUE.

histomap(immob.spdf,"prix.vente",identify=TRUE)
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Cercles concentriques

On peut représenter les sites avec une taille proportionnelle à une variable
choisie parmi les variables de type numeric incluses dans objet@data. Il
suffit ensuite d’utiliser le bouton “bubbles”.

Le choix de cette case a pour effet d’ouvrir une fenêtre tk qui vous
demande si vous souhaitez afficher une légende sur la carte pour donner la
correspondance entre taille des cercles et valeurs prises par la variable
sélectionnée.
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Chap 5 : Introduction à GeoXp

Sélection non interactive

On peut afficher une sélection supplémentaire non active qui sert de
réperage avec le bouton “Preselected sites”. Il faut utiliser l’option
criteria qui contient un vecteur de booléen de la même taille que l’objet
spatial. Par exemple, pour préselectionner les villes avec un prix de location
moyen au m2 supérieur à 12 euros :

histomap(immob.spdf,"prix.vente",

criteria=(immob.spdf@data$prix.location>12))
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Chap 5 : Introduction à GeoXp

Couleurs et symboles

Pour les graphiques manipulant une variable qualitative, l’option col=

permet de donner des couleurs différentes (sur le diagramme en tuyaux
d’orgue et sur la carte) en fonction des modalités du facteur.
L’option pch a pour effet de d’afficher les unités spatiales sur la carte avec
des symboles différents.
Par exemple :

barmap(columbus,"CP",col=c("orange","violet"),pch=c(2,4))

Le code ci-dessus a pour effet d’ouvrir une fenêtre tk qui vous demande si
vous souhaitez afficher une légende sur la carte pour donner la définition
des couleurs et symboles représentés.
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Chap 5 : Application de GeoXp à l’analyse exploratoire

Analyse d’une répartition

Pour décrire la répartition d’une variable quantitative de façon plus fine
qu’avec une bôıte à moustache, on peut utiliser un histogramme ou un
estimateur à noyau de la densité.
L’avantage d’un estimateur continu de la densité sur l’histogramme est
évident lorsque l’on veut comparer deux répartitions : par exemple celle
d’une variable sur l’ensemble de la région avec celle de la même variable
sur une sous-région. On peut superposer deux histogrammes en fréquence
mais la superposition de deux courbes de densité reste plus lisible.
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Chap 5 : Application de GeoXp à l’analyse exploratoire

Analyse d’une répartition : exemple avec densitymap
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Chap 5 : Application de GeoXp à l’analyse exploratoire

Analyse d’une répartition

Que ce soit avec l’histogramme ou avec la densité, il est intéressant pour
une variable donnée d’explorer en particulier les queues de distribution, à
droite et à gauche, pour déterminer si elles occupent une position
particulière sur la carte. La sélection des queues de la distribution met
potentiellement en lumière sur la carte des zones ayant un comportement
atypique. Inversement, si l’on s’intéresse à une sous-région donnée, sa
sélection sur la carte permet de comparer la sous-distribution de la variable
dans cette zone avec la distribution globale. Le paramètre de lissage de
l’estimateur à noyau de la densité est ajustable à l’œil avec une réglette.
Pour une variable qualitative, le diagramme en barre remplace
l’histogramme, mais l’utilisation et les objectifs sont similaires.
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Chap 5 : Application de GeoXp à l’analyse exploratoire

Application : Zone de chalandise basée sur les
distances-temps

Zone de chalandise du magasin E085 basée sur les distances-temps.
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Chap 5 : Application de GeoXp à l’analyse exploratoire

Analyse de concentration : concentration du potentiel
cumulé en géomarketing

Potentiel : Pij CA du magasin j provenant de l’iris i . Potentiel total de l’iris
i : somme des potentiels sur tous les magasins (enseigne et concurrence).
Produits blancs : 86 % des iris aux plus faibles potentiels concentrent 50
% du potentiel total (correspondant à des dépenses de moins de
277090.33 euros sur la période d’interêt) � agglomérations toulousaines
et bordelaises.
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Chap 5 : Application de GeoXp à l’analyse exploratoire

Analyse bivariée

Pour la magasin E085, sélection d’iris ayant un fort potentiel par habitant
comparé à des iris à même distance de E085.
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Chap 5 : Application de GeoXp à l’analyse exploratoire

Analyse exploratoire d’une tendance directionnelle

Avec la fonction driftmap de GeoXp, tendance de la variable HOVAL des
données columbus
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Chap 5 : Application de GeoXp à l’analyse exploratoire

Analyse exploratoire d’une tendance directionnelle

Avec la fonction angleplotmap de GeoXp, tendance de la variable latitude
des données columbus
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Chap 5 : Application de GeoXp à l’analyse exploratoire

Diagramme de Moran

Le “Diagramme de Moran” est un nuage de points de WX contre X , où
X est centrée et W normalisée.
On peut superposer au nuage la droite de régression qui passe par le point
moyen. La pente de celle-ci est égale à l’indice de Moran.
Utilisation :

détecter des points aberrants

aprécier le degré d’autocorrélation

non linéarité 7→ plusieurs régimes d’association spatiale.

Remarque : il est intéressant de normaliser X avant de faire le graphique
pour pouvoir ainsi comparer plusieurs moran plots entre eux.
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Chap 5 : Application de GeoXp à l’analyse exploratoire

Diagramme de Moran

Diagramme de Moran de la variable HOVAL (données columbus) avec
coloration des quatre quadrants
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Chap 5 : Application de GeoXp à l’analyse exploratoire

Graphique des voisinages

Pour une matrice de voisinage W et une variable X données, le graphique
des voisinages consiste en un simple diagramme de dispersion où l’on
porte pour tout site i, en abscisse la valeur Xi de la variable X au site i et
en ordonnée les valeurs Xj de la variable X aux sites j voisins de i au sens
de W, c’est-à-dire tels que wij 6== 0.
Dans GeoXp, ce diagramme est lié à la carte grâce à la fonction
neighbourmap et la sélection d’un point sur ce graphique provoque
l’affichage du site correspondant sur la carte ainsi que de ses voisins au
sens de W, reliées à i par un segment.
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Chap 5 : Application de GeoXp à l’analyse exploratoire

Analyse exploratoire d’une matrice de voisinage

Si l’on utilise la fonction neighbourmap de GeoXp avec les variables
géographiques (latitude ou longitude), ce diagramme permet d’explorer la
matrice dans le sens suivant

visualiser qui est voisin de qui

aprécier visuellement la taille des voisinages (si matrice de type knn)

aprécier visuellement le nombre de voisins (si matrice de type
distance)

library(GeoXp)

neighbourmap(nc, "east", wd.nb)
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Chap 5 : Application de GeoXp à l’analyse exploratoire

Diagramme des voisins pour la matrice de Delaunay

Variable : Latitude, voisins avec de grandes differences en latitude
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Chap 5 : Application de GeoXp à l’analyse exploratoire

Analyse exploratoire d’une matrice de voisinage

La fonction ’barnbmap’ de GeoXp réalise un diagramme en tuyaux d’orgue
du nombre de voisins des sites, lié à une carte.

barnbmap(nc,wd.nb)

Pour données SIDS avec la matrice basée sur un seuil de distance
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Chap 5 : Application de GeoXp à l’analyse exploratoire

Analyse exploratoire d’une matrice de voisinage

De même, la fonction ’histnbmap’ réalise un histogramme des distances
aux voisins lié à une carte.

histnbmap(nc,knn2nb(wv.knn))

Pour données SIDS avec la matrice basée sur les quatre plus proches
voisins
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Chap 5 : Application de GeoXp à l’analyse exploratoire

Valeurs atypiques

Dès que les données sont géoréférencées, il existe deux sortes de valeurs
atypiques : les globales et les locales.
Un point est dit aberrant global pour la variable X si sa valeur pour X est
extrême par rapport à l’ensemble de la distribution de X.
Un point est dit aberrant local pour la variable X si sa valeur pour X est
extrême par rapport à l’ensemble de la sous-distribution des X sur ses
voisins (pour une structure de voisinage donnée).
Un aberrant global est nécessairement un aberrant local, mais un aberrant
local peut très bien ne pas être un aberrant global.
Pour détecter les aberrants locaux, on peut utiliser la fonction
neighbourmap sur la variable d’intérêt. Ils apparaissent alors comme les
points éloignés de la diagonale.
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Chap 5 : Application de GeoXp à l’analyse exploratoire

Valeurs atypiques illustration
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Chap 6 : Tests Tests d’autocorrélation pour variables surfaciques

Test de Moran pour variable surfacique continue

Il s’agit de tester l’hypothèse d’absence d’autocorrélation spatiale pour une
variable brute X .
H0 : absence d’autocorrélation spatiale
H1 : présence d’autocorrélation spatiale
Il faut préciser H0 ↪→ deux modèles différents
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Chap 6 : Tests Tests d’autocorrélation pour variables surfaciques

Test de Moran pour variable surfacique continue : test
gaussien

le modèle “free sampling” : X1, · · · ,Xn sont i.i.d. N (0, σ2)
Ce test, dit “test gaussien”, teste si l’échantillon observé est
représentatif de la distribution d’un vecteur gaussien de composantes
i.i.d.
En pratique, on utilise la loi asymptotique de I sous H0. Pour cela, on
a besoin de normaliser d’abord l’indice en lui enlevant sa moyenne et
en le divisant par son écart-type. Ensuite, on utilise la loi
asymptotique N (0, 1) de l’indice normalisé pour calculer une p-valeur
associée.
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Chap 6 : Tests Tests d’autocorrélation pour variables surfaciques

Les moments du I de Moran sous l’hypothèse nulle

Le calcul des moments du I de Moran utilise le Théorème de Pitman et
Koopmans
Si X1, · · ·Xn sont i.i.d. N (0, 1) et si
H = h(X1, · · · ,Xn) est une statistique indépendante de l’unité
(h(λX1, · · · , λXn) = h(X1, · · · ,Xn) quel que soit λ > 0), alors H est
indépendante de Q =

∑n
i=1 X

2
i .

Dans le modèle free-sampling, on obtient

E(I ) = − 1

n − 1
,E(I 2) =

n2S1 − nS2 + 3S2
0

(n2 − 1)S2
0
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Chap 6 : Tests Tests d’autocorrélation pour variables surfaciques

Test de Moran pour variable surfacique continue : test
gaussien

> moran.test(columbus$HOVAL, nb2listw(col.gal.nb),

randomisation=FALSE)

Moran’s I test under normality

data: columbus$HOVAL

weights: nb2listw(col.gal.nb)

Moran I statistic standard deviate = 2.066, p-value = 0.01941

alternative hypothesis: greater

sample estimates:

Moran I statistic Expectation Variance

0.173645208 -0.020833333 0.008860962
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Chap 6 : Tests Tests d’autocorrélation pour variables surfaciques

Test de Moran pour variable surfacique continue : test
gaussien

Expliquez cette expérience :

>S=sample(columbus$HOVAL, length(columbus$HOVAL))

>moran.test(S, nb2listw(col.gal.nb), randomisation=FALSE)

Moran’s I test under normality

data: S

weights: nb2listw(col.gal.nb)

Moran I statistic standard deviate = -0.2821, p-value = 0.611

alternative hypothesis: greater

sample estimates:

Moran I statistic Expectation Variance

-0.047385261 -0.020833333 0.008860962
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Chap 6 : Tests Tests d’autocorrélation pour variables surfaciques

Test de Moran pour variable continue : test de permutation

le modèle “non free sampling” ou modèle de randomisation :
conditionnellement à Xi = xi , en l’absence d’autocorrélation spatiale
les n! permutations des réalisations x1, · · · , xn sont équiprobables. Ce
test, dit ”test de permutation”, teste si l’échantillon observé est
représentatif d’une allocation aléatoire uniforme des valeurs x1, · · · , xn
aux n sites de la carte. Dans ce cas, notons que les lois marginales conditionnelles ne sont pas

indépendantes.

On a aussi E(I ) = − 1
n−1 mais la formule de la variance est plus

compliquée.
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Chap 6 : Tests Tests d’autocorrélation pour variables surfaciques

Test de Moran pour variable continue : test de permutation

En pratique, on tire au hasard T permutations, on calcule les indices de
Moran pour chacune de T permutations, leur minimum Imin et maximum
Imax . On compare alors la valeur observée de l’indice de Moran avec
l’intervalle [Imin, Imax ].
On rejette H0 si l’indice de Moran n’est pas dans cet intervalle.
Le “pseudo-niveau de signification” empirique du test est égal à
(L + 1)/(T + 1) où L est le nombre de fois parmi les T permutations que
l’indice de Moran recalculé dépasse la valeur observée sur l’échantillon. (le
+1 vient du fait qu’on compte l’observation et les T permutations).
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Chap 6 : Tests Tests d’autocorrélation pour variables surfaciques

Test de Moran pour variable continue : test de permutation

> moran.test(columbus$HOVAL, nb2listw(col.gal.nb),

randomisation=TRUE)

Moran’s I test under randomisation

data: columbus$HOVAL

weights: nb2listw(col.gal.nb)

Moran I statistic standard deviate = 2.1001, p-value = 0.01786

alternative hypothesis: greater

sample estimates:

Moran I statistic Expectation Variance

0.173645208 -0.020833333 0.008575953
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Chap 6 : Tests Tests d’autocorrélation pour variables surfaciques

Test d’autocorrélation basé sur l’indice de Geary

Du lien entre Moran et Geary, on déduit les formules des moments de
l’indice de Geary

free sampling

E(G ) = 1,Var(G ) =
(2S1 + S2)(n − 1)− 4S2

0

2(n + 1)S02

non free sampling
E(G ) = 1, n(n − 2)(n − 3)S2

0Var(G ) = (n − 1)S1[n2 − 3n + 3− (n −
1)b2]− 1

4 (n−1)S2[n2 +3n−6−(n2−n+2)b2]+S2
0 (n2−3−(n−1)2b2)
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Chap 6 : Tests Tests d’autocorrélation pour variables surfaciques

Test d’autocorrélation basé sur l’indice de Geary

>geary.test(columbus$HOVAL, nb2listw(col.gal.nb),

randomisation=FALSE)

Geary’s C test under normality

data: columbus$HOVAL

weights: nb2listw(col.gal.nb)

Geary C statistic standard deviate = 1.7972, p-value = 0.03615

alternative hypothesis: Expectation greater than statistic

sample estimates:

Geary C statistic Expectation Variance

0.81754447 1.00000000 0.01030674

> geary.test(columbus$HOVAL, nb2listw(col.gal.nb),

randomisation=TRUE)

Geary’s C test under randomisation

data: columbus$HOVAL

weights: nb2listw(col.gal.nb)

Geary C statistic standard deviate = 1.7083, p-value = 0.04379

alternative hypothesis: Expectation greater than statistic

sample estimates:

Geary C statistic Expectation Variance

0.81754447 1.00000000 0.01140734
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Chap 6 : Tests Tests d’autocorrélation pour variables surfaciques

Test d’autocorrélation pour variable qualitative : test
gaussien

Si X est qualitative avec k modalités :
- le modèle ”free” : tirage aléatoire avec remise dans une population ayant
k groupes de proportions p1, · · · , pk connues : les Xi sont indépendantes
de loi multinomiale.
- le modèle ”non free” : tirage aléatoire sans remise dans une population
ayant k groupes d’effectifs connus n1, · · · , nk : la loi du n-uplet
(X1, · · · ,Xn) est la loi hypergéométrique conditionnelle aux effectifs de
groupe observés.
En pratique, p1, · · · , pk doivent être estimées par les fréquences
empiriques. Dans le cas ”non free”, notons que les lois marginales ne sont pas

indépendantes.
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Chap 6 : Tests Tests d’autocorrélation pour variables surfaciques

Test “join counts” pour variable dichotomique

Le modèle ”free sampling” suppose les Xi iid Bernouilli B(1, p)

E(BB) =
1

2
S0p

2

4Var(BB) = p2(1− p)[S1(1− p) + S2p]

E(BW ) = S0p(1− p)

4Var(BW ) = [4S1p(1− p) + S2p(1− p)(1− 4p(1− p))]

Notations :

S0 =
∑
i 6=j

wij ,S1 =
1

2

∑
i 6=j

(wij + wji )
2,S2 =

∑
i 6=j

(wi+ + w+i )
2

wi+ =
∑
j

wij ,w+j =
∑
j

wji
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Chap 6 : Tests Tests d’autocorrélation pour variables surfaciques

Test “join counts” pour variable dichotomique

Le modèle ”non free sampling” suppose qu’il y a nB =
∑

i Xi valeurs 1 et
n − nB valeurs 0, et que l’on fait un tirage sans remise
Si n(b) = n(n − 1) · · · (n − b + 1), on a

E(BB) =
S0

2

n
(2)
B

n(2)

4Var(BB) = [S1(
n

(2)
B

n(2)
− 2

n
(3)
B

n(3)
+

n
(4)
B

n(4)
)

+ S2(
n

(3)
B

n(3)
−

n
(4)
B

n(4)
) +

S2
0n

(4)
B

n(4)
− (

S0n
(2)
B

n(2)
)2]

4asVar(BB) = p2(1− p)[S1(1− p) + S2p − 4
S2

0p

n
]
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Chap 6 : Tests Tests d’autocorrélation pour variables surfaciques

Test “join counts” pour variable dichotomique

> joincount.test(as.factor(HICRIME),nb2listw(col.gal.nb))

Join count test under nonfree sampling

data: as.factor(HICRIME)

weights: nb2listw(col.gal.nb)

Std. deviate for FALSE = 4.6176, p-value = 1.941e-06

alternative hypothesis: greater

sample estimates:

Same colour statistic Expectation Variance

9.4833333 6.2500000 0.4903158

Join count test under nonfree sampling

data: as.factor(HICRIME)

weights: nb2listw(col.gal.nb)

Std. deviate for TRUE = 4.9963, p-value = 2.921e-07

alternative hypothesis: greater

sample estimates:

Same colour statistic Expectation Variance

9.206349 5.750000 0.478553
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Chap 6 : Tests Tests d’autocorrélation pour variables surfaciques

Test “join counts” pour variable dichotomique

joincount.mc(HICRIME,nb2listw(col.gal.nb),nsim=100)

Monte-Carlo simulation of join-count statistic

data: HICRIME

weights: nb2listw(col.gal.nb)

number of simulations + 1: 101

Join-count statistic for faible = 9.4833, rank of observed statistic = 101, p-value = 0.009901

alternative hypothesis: greater

sample estimates:

mean of simulation variance of simulation

6.3177480 0.5678434

Monte-Carlo simulation of join-count statistic

data: HICRIME

weights: nb2listw(col.gal.nb)

number of simulations + 1: 101

Join-count statistic for fort = 9.2063, rank of observed statistic = 101, p-value = 0.009901

alternative hypothesis: greater

sample estimates:

mean of simulation variance of simulation

5.7360655 0.5681022
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Chap 6 : Tests Tests d’autocorrélation pour variables surfaciques

Pratique des tests d’autocorrélation spatiale

Choix entre “free sampling” et “non free sampling” :
- guidé par le contexte
- si X suit une loi F inconnue de variance finie, on a toujours la même
espérance et le moment d’ordre deux vérifie E(I 2) = E(ER(I 2)).
Choix entre I et G :
- l’indice de Geary est plus sensible aux points aberrants
- l’approximation gaussienne est meilleure pour I que pour G
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Chap 6 : Tests Tests d’autocorrélation pour variables surfaciques

Test d’autocorrélation des résidus d’un modèle linéaire
ordinaire

L’indice de Moran généralisé s’écrit comme l’indice de Moran appliqué aux
résidus du modèle WLS : ceux-ci n’étant pas des observations mais des
estimations, il faut ajuster les calculs de moments dans le contexte “free
sampling”.
Dans le cas D = In, on montre que sous l’hypothèse d’absence
d’autocorrélation spatiale avec une matrice de voisinage W

E(I ) = − trA

n − k
,

où k est le nombre de colonnes de X et A = (X ′X )−1X ′WX .
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Chap 6 : Tests Tests d’autocorrélation pour variables surfaciques

Test d’autocorrélation des résidus d’un modèle linéaire
ordinaire

> lmmod=lm(HOVAL~CRIME+INC,data=columbus)

> lm.morantest(lmmod,nb2listw(col.gal.nb))

Global Moran’s I for regression residuals

data:

model: lm(formula = HOVAL ~ CRIME + INC, data = columbus)

weights: nb2listw(col.gal.nb)

Moran I statistic standard deviate = 2.1947, p-value = 0.01409

alternative hypothesis: greater

sample estimates:

Observed Moran’s I Expectation Variance

0.167370309 -0.034246629 0.008439035
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Chap 6 : Tests Tests d’homogénéité spatiale pour semis de points

Hypothèse CSR

On dit qu’un processus ponctuel vérifie l’ hypothèse d’homogénéité
spatiale (hypothèse CSR pour “complete spatial randomness”) si c’est un
processus de Poisson homogène.
Cette hypothèse implique donc à la fois l’homogénéité de la répartition des
points mais aussi l’indépendance entre les observations dans des zones
disjointes.
Tester l’hypothèse CSR est la première étape dans la modélisation d’un
processus ponctuel dans le sens où si cela est le cas, le processus sera
entièrement caractérisé par le réel λ de la définition.
Si cela n’est pas le cas, c’est alors que le travail de modélisation peut
commencer.
Il existe de nombreux tests de CSR mais nous allons seulement développer
deux approches.
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Chap 6 : Tests Tests d’homogénéité spatiale pour semis de points

Test basé sur les quadrats

Diviser la fenêtre d’observation en m quadrats, c’est à dire en cellules
rectangulaires ou carrées d’égale surface
Dénombrer les points du processus dans chaque cellule, notés
nk , k = 1, . . . ,m.
Avec n̄ = n

m , on définit

I =
m∑

k=1

(nk − n̄)2

(m − 1)n̄
.

I peut d’abord être interprété comme le rapport entre la variance
empirique des effectifs nk et leur moyenne (coefficient de variation).
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Chap 6 : Tests Tests d’homogénéité spatiale pour semis de points

Test basé sur les quadrats

Sous l’hypothèse CSR, les effectifs sont équidistribuées (même surface), de
loi de Poisson et comme la moyenne d’une loi de Poisson est égale à sa
variance, I n’est autre que le ratio de deux estimateurs de la variance.
Conditionnellement au nombre total de points, (m − 1)I n’est autre que le
χ2 de Pearson d’ajustement de la série des effectifs des quadrats.
Sous l’hypothèse CSR, la loi de (m − 1)I peut être approximée
asymptotiquement par une loi de χ2 à m − 1 degrés de liberté.
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Chap 6 : Tests Tests d’homogénéité spatiale pour semis de points

Test basé sur les quadrats

Interprétation :

lorsque I est significativement grand et que l’homogénéité est
respectée, il denote une tendance à l’aggrégation, c’est à dire une
dépendance entre les points de type attraction.

Inversement, lorsque I est significativement petit et que
l’homogénéité est respectée, il traduit une tendance à la régularité,
c’est à dire une dépendance entre les points de type répulsion.
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Chap 6 : Tests Tests d’homogénéité spatiale pour semis de points

Test basé sur les quadrats

> poisson=rpoispp(10,win=window)

> quadrat.test(poisson)

Chi-squared test of CSR using quadrat counts

data: poisson

X-squared = 16.9478, df = 24, p-value = 0.8509

Quadrats: 5 by 5 grid of tiles

poisson
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Chap 6 : Tests Tests d’homogénéité spatiale pour semis de points

Test basé sur les quadrats

> poisson_inhom=rpoispp(function(x,y){100*exp(-3*x)+100*exp(-3*y)},

20,win=window)

> quadrat.test(poisson_inhom)

Chi-squared test of CSR using quadrat counts

data: poisson_inhom

X-squared = 652.0952, df = 24, p-value < 2.2e-16

Quadrats: 5 by 5 grid of tiles

poisson_inhom
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Chap 6 : Tests Tests d’homogénéité spatiale pour semis de points

Test basé sur les quadrats

> tt=quadrat.test(poisson)

> plot(tt)

A gauche les effectifs observés, à droite les effectifs estimés sous CSR, au
centre les résidus de Pearson.

tt

38 45 34 36 32

38 34 50 37 35

45 30 37 36 39

34 41 41 39 41

36 31 44 49 36

38.3 38.3 38.3 38.3 38.3

38.3 38.3 38.3 38.3 38.3

38.3 38.3 38.3 38.3 38.3

38.3 38.3 38.3 38.3 38.3

38.3 38.3 38.3 38.3 38.3

−0.052 1.1 −0.7 −0.37 −1

−0.052 −0.7 1.9 −0.21 −0.54

1.1 −1.3 −0.21 −0.37 0.11

−0.7 0.43 0.43 0.11 0.43

−0.37 −1.2 0.92 1.7 −0.37
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Chap 6 : Tests Tests d’homogénéité spatiale pour semis de points

Diagnostic basé sur des simulations

Une autre approche pour évaluer l’hypothèse CSR consiste à simuler M
réalisations d’un processus de Poisson homogène et de calculer des
caractéristiques du processus (fonctions F,G, K ou L, voir + loin) pour
chaque simulation.
On trace ensuite les enveloppes de ces courbes sur l’ensemble des
simulations et on évalue si la caractéristique observée sur l’échantillon
entre ou non dans ces enveloppes. Nous reviendrons sur cette méthode
après avoir défini ces caractéristiques.
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Chap 6 : Tests Tests d’homogénéité spatiale pour semis de points

Test de CSR basé sur la fonction F

La méthode suivante permet d’ évaluer qualitativement l’hypothèse CSR
par des simulations. On simule M réalisations d’un processus de Poisson
homogène dans E et on calcule la fonction F̂k(r) pour chaque simulation
k .
On détermine ensuite l’enveloppe supérieure FU et inférieure FL par

FU(r) =
M

max
k=1

F̂k(r),FL(r) =
M

min
k=1

F̂k(r).

Si la fonction F̂ (r) de notre réalisation se trouve dans l’enveloppe, on en
déduit que le modèle de Poisson homogène est compatible avec les
données. Pour le jeu de données cells (positions de cellules), on voit que la
fonction F̂ en noir sur la figure suivante sort de l’enveloppe (en pointillés).
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Chap 6 : Tests Tests d’homogénéité spatiale pour semis de points

Test de CSR basé sur F

cells
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Chap 6 : Tests Tests d’homogénéité spatiale pour semis de points

Test de CSR basé sur G
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Chap 7 : Régression spatiale pour variables surfaciques Catalogue

Contexte

Variable dépendante : vecteur aléatoire Y (quantitatif, univarié) observé
sur un nombre fini de zones représentées par leur centroide si .
Variable indépendante : vecteur aléatoire X (quantitatif , multivarié de
dimension p), observé sur les mêmes zones.
En général on suppose de plus que X et Y sont gaussiens.
Modèle : Y = µ+ ε avec µ = E(Y | X ) (d’où E(ε) = 0 et X ⊥ Y ),
Var(Y ) = V .
En général, on dispose d’une seule réalisation, c’est à dire de l’observation
du couple (X ,Y ) en n sites.
Sans autre restriction sur ce modèle, on a n observations pour estimer
n + n(n+1)

2 paramètres 7→ nécéssité de réduire le nombre de paramètres.
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Chap 7 : Régression spatiale pour variables surfaciques Catalogue

Modélisation de la tendance

On exprime la tendance comme une fonction

des coordonnées géographiques

de régresseurs + régresseurs spatialement décalés

une combinaison des deux
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Chap 7 : Régression spatiale pour variables surfaciques Catalogue

Modèle non spatial WLS : V diagonale

Y = Xβ + ε avec E(ε) = 0,Var(ε) = σ2D, où D est une matrice
diagonale, D = In correspondant au modèle OLS.
Présence de D : l’hétéroscédasticité est fréquente dans les variables
spatiales.
exemple : Ti (resp : τi ) est le taux de chomage observé (resp : théorique) dans la

zone i et Pi est la population de la zone. Alors var(Ti ) = τi (1−τi )
Pi

donc même si le

taux de chomage est constant, il faut prendre des poids sur la diagonale de D

proportionnels à 1
Pi

.
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Chap 7 : Régression spatiale pour variables surfaciques Catalogue

Estimateurs du maximum de vraisemblance dans le modèle
WLS

β̂ = (X ′D−1X )−1X ′D−1Y

Var(β̂) = σ2(X ′D−1X )−1

Var(ε̂) = σ2PDP ′,P = In − (X ′D−1X )−1X ′D−1

σ̂2 =
(Y − X β̂)′D−1(Y − X β̂)2

n − p
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Chap 7 : Régression spatiale pour variables surfaciques Catalogue

Test d’autocorrélation spatiale des résidus du modèle WLS

L’indice de Moran généralisé s’écrit comme l’indice de Moran appliqué aux
résidus du modèle WLS : ceux-ci n’étant pas des observations mais des
estimations, il faut ajuster les calculs de moments dans le contexte “free
sampling”.
Dans le cas D = In, on montre que sous l’hypothèse d’absence
d’autocorrélation spatiale

E(I ) = − trA

n − k
,

où k est le nombre de colonnes de X et A = (X ′X )−1X ′WX .
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Chap 7 : Régression spatiale pour variables surfaciques Catalogue

Test d’autocorrélation spatiale des résidus du modèle WLS

Si k = 1 (aucun régresseur), on retrouve la formule E(I ) = − 1
n−1 .

Si k = 2 (un seul régresseur), on obtient E(I ) = −1+IX
n−2 , où IX est l’indice

de Moran pour la variable X .

Var(I ) =
1

(n − k)(n − k + 2)
[S1 + 2trA2 − trB − 2(trA)2

n − k
]
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Chap 7 : Régression spatiale pour variables surfaciques Catalogue

Un catalogue de modèles

Les modèles spatiaux consistent à introduire une variable spatialement
décalée dans un modèle OLS ou WLS pour introduire de l’autocorrélation
spatiale.

modèle régressif croisé

modèle LAG : spatial autorégressif

modèle SDM : “spatial Durbin”

modèle SEM : à erreurs spatialement corrélées

modèle SAC : combine LAG et SEM

modèle SARMA

modèle CAR : conditionnel autorégressif
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Chap 7 : Régression spatiale pour variables surfaciques Catalogue

Etude de cas : Columbus

Nous utiliserons pour illustrer les notions un jeu de données économiques
de Luc Anselin sur la ville de Columbus (Ohio, US) en 1980. Ce jeu de
trouve dans le package spdep au format .Rdata et dans le package
maptools au format .shp. La ville de Columbus est découpée en 49
quartiers pour lesquels on dispose de 18 attributs parmi lesquels nous
avons choisi

HOVAL valeur immobilière en $ 1000

INC revenu moyen des ménages en $ 1000

CRIME nombre de cambriolages et vols de voitures pour 1000
habitants

On va chercher à expliquer la criminalité dans les quartiers par la valeur
immobilière et le revenu des ménages.
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Chap 7 : Régression spatiale pour variables surfaciques Catalogue

Etude de cas : Columbus

La structure de voisinage est une matrice de contiguité de type “queen”
notée W

plot(columbus)

plot(col.gal.nb,coord,add=TRUE)
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Chap 7 : Régression spatiale pour variables surfaciques Catalogue

Etude de cas : Columbus

Ajustement d’un modèle OLS

mod=lm(CRIME ~ INC + HOVAL, data = columbus)

Call:

lm(formula = CRIME ~ INC + HOVAL, data = columbus)

Residuals:

Min 1Q Median 3Q Max

-34.418 -6.388 -1.580 9.052 28.649

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 68.6190 4.7355 14.490 < 2e-16

INC -1.5973 0.3341 -4.780 1.83e-05

HOVAL -0.2739 0.1032 -2.654 0.0109

Residual standard error: 11.43 on 46 degrees of freedom

Multiple R-squared: 0.5524, Adjusted R-squared: 0.5329

F-statistic: 28.39 on 2 and 46 DF, p-value: 9.34e-09
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Chap 7 : Régression spatiale pour variables surfaciques Catalogue

Etude de cas : Columbus

Test de Moran des résidus de ce modèle (test gaussien)

lm.morantest(mod,nb2listw(col.gal.nb))

Global Moran’s I for regression residuals

data:

model: lm(formula = CRIME ~ INC + HOVAL, data = columbus)

weights: col.listw

Moran I statistic standard deviate = 2.681, p-value = 0.00367

alternative hypothesis: greater

sample estimates:

Observed Moran’s I Expectation Variance

0.212374153 -0.033268284 0.008394853
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Chap 7 : Régression spatiale pour variables surfaciques Catalogue

Le modèle régressif croisé

Une première façon simple d’introduire de l’interaction entre unités
spatiales est d’introduire une variable spatialement décalée parmi les
explicatives :

Y = Xβ + WZδ + ε,

avec E(ε) = 0,Var(ε) = σ2D, où D est une matrice diagonale de
pondération.
L’observation Y pour une unité spatiale donnée est donc ainsi expliquée
par la valeur de X pour cette unité et par la moyenne des valeurs de Z
pour les unités voisines. Par exemple, la production d’une région peut être
expliquée par la disponibilité du travail et par le montant du capital public
dans les zones voisines.
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Chap 7 : Régression spatiale pour variables surfaciques Catalogue

Le modèle régressif croisé

µ et V :
µ = Xβ + WZδ

et
V = σ2D

L’ajustement de ce modèle peut se faire par MCO. Attention : si W est
normalisée, il ne faut pas que la constante apparaisse à la fois dans X et
dans Z sous peine de non identifiabilité.
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Chap 7 : Régression spatiale pour variables surfaciques Catalogue

Le modèle régressif croisé : application à Columbus

lm(formula = CRIME ~ INC + HOVAL + lag_INC + lag_HOVAL, data = columbus)

Residuals:

Min 1Q Median 3Q Max

-36.2447 -7.6130 0.1881 7.8635 25.9821

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 74.0290 6.7218 11.013 3.13e-14

INC -1.1081 0.3750 -2.955 0.00501

HOVAL -0.2949 0.1014 -2.910 0.00565

lag_INC -1.3834 0.5592 -2.474 0.01729

lag_HOVAL 0.2262 0.2026 1.116 0.27041

Residual standard error: 10.94 on 44 degrees of freedom

Multiple R-squared: 0.6085, Adjusted R-squared: 0.5729

F-statistic: 17.09 on 4 and 44 DF, p-value: 1.581e-08
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Chap 7 : Régression spatiale pour variables surfaciques Catalogue

Modèle spatial simultané autorégressif LAG

Le modèle LAG propose de prendre en compte dans la moyenne de Y sur
une zone, outre les variables explicatives X , la moyenne de Y sur les zones
voisines

Y = ρWY + Xβ + ε

WY est la variable endogène décalée et (I − ρW )Y la variable endogène
filtrée.
Notons que si la matrice (I − ρW ) est non singulière, ce modèle admet
l’écriture équivalente suivante dite forme réduite ou DGP

Y = (I − ρW )−1Xβ + (I − ρW )−1ε.
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Chap 7 : Régression spatiale pour variables surfaciques Catalogue

Modèle spatial simultané autorégressif LAG

µ et V :
µ = (I − ρW )−1Xβ

Var(Y ) = σ2{(I − ρW ′)(I − ρW )}−1.

Notons que cette variance implique une hétéroscédasticité même dans le
cas où les erreurs sont homoscédastiques.
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Chap 7 : Régression spatiale pour variables surfaciques Catalogue

Modèle SDM Spatial Durbin

Une combinaison du modèle régressif croisé et du modèle LAG donne le
modèle dit “Spatial Durbin”

Y = ρWY + Xβ + WZδ + ε

Forme réduite :

Y = (I − ρW )−1(Xβ + WZδ) + (I − ρW )−1ε.

µ et V :
µ = (I − ρW )−1(Xβ + WZδ)

et
Var(Y ) = σ2{(I − ρW ′)(I − ρW )}−1.
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Chap 7 : Régression spatiale pour variables surfaciques Catalogue

Modèle à erreurs spatialement corrélées : SEM

Voyons à présent un autre modèle dans lequel l’autocorrélation spatiale
intervient par l’intermédiaire d’un modèle LAG sur les erreurs.

Y = Xβ + ε

ε = λW ε+ U,

où U est un bruit blanc Le paramètre λ mesure l’intensité de
l’autocorrélation spatiale entre les résidus.
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Chap 7 : Régression spatiale pour variables surfaciques Catalogue

Modèle à erreurs spatialement corrélées : SEM

On a l’écriture équivalente

(I − λW )Y = (I − λW )Xβ + U.

Notons que si la matrice (I − λW ) est non singulière, ce modèle admet la
forme réduite suivante

Y = Xβ + (I − λW )−1U

µ et V :
µ = Xβ

Var(Y ) = σ2{(I − λW ′)(I − λW )}−1.

Notons que cette variance implique une hétéroscédasticité (les éléments de
la diagonale ne sont pas constants) même dans le cas où les erreurs U
sont homoscédastiques.
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Chap 7 : Régression spatiale pour variables surfaciques Catalogue

Modèle général : SAC

Ce modèle combine les modèles LAG et SEM de la façon suivante

Y = ρW1Y + Xβ + ε

ε = λW2ε+ U,

où U est un bruit blanc
Forme réduite :

Y = (I − ρW1)−1Xβ + (I − ρW1)−1(I − λW2)−1U

µ et V :
µ = (I − ρW1)−1Xβ

et
V = [(I − ρW ′

1)(I − λW ′
2)(I − λW2)(I − ρW1)]−1
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Chap 7 : Régression spatiale pour variables surfaciques Catalogue

Modèle SARMA

Le modèle MA à un paramètre s’écrit :
Yi = µ+ ρ

∑n
i=1 wijεj + εi où ε est un bruit blanc E(ε) = 0,Var(ε) = σ2D

(D matrice diagonale).
alors V = σ2(In + ρW )D(In + ρW )′.
On peut utiliser ce modèle combiné avec un modèle LAG

Y = ρW1Y + Xβ + ε

ε = (I − λW2)u,

où U est un bruit blanc
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Chap 7 : Régression spatiale pour variables surfaciques Catalogue

Modèle conditionnel autorégressif CAR

Ce modèle est défini par une contrainte de type markovien sur la loi
conditionnelle de Yi sachant la valeur de Y pour les autres sites

Yi | Y1, · · · ,Yi−1,Yi+1, · · · ,Yn ∼ N (µi +
n∑

j=1

cij(Yj − µj), τ2
i ),

où

C = (cij) et D = diag(τ2
1 , · · · , τ2

n ) doivent satisfaire les deux
conditions D−1C symétrique et D−1(I − C ) définie positive.

µ s’exprime par une combinaison linéaire d’explicatives µ = Xβ

De façon équivalente dans le cas gaussien Y ∼ N (Xβ, τ2(I − C )−1D)
Pour le modèle CAR à un paramètre C = ρW avec W matrice de
voisinage, la variance s’écrit alors V = τ2(In − ρW )−1D.
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Chap 7 : Régression spatiale pour variables surfaciques Catalogue

Lien CAR-LAG

En faisant une hypothèse gaussienne, on peut écrire le modèle LAG

Y ∼ N ((I − ρW )−1Xβ, σ2{(I − ρW ′)(I − ρW )}−1)

et le modèle CAR
Y ∼ N (Xβ, τ2(I − C )−1)

d’où la même structure de covariance en posant
C = ρ(W + W ′)− ρ2WW ′ et σ = τ mais des moyennes modélisées de
façon différente.
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Chap 7 : Régression spatiale pour variables surfaciques Modèle LAG

Modèle LAG : contrainte sur les coefficients

Il y a dans ce modèle des contraintes sur le paramètre ρ qui sont dues à la
nécéssité d’imposer la non singularité de I − ρW . Soient ωmin et ωmax la
plus petite et la plus grande valeurs propres de la matrice de voisinage W .
Si W est symétrique,

1

ωmin
< ρ <

1

ωmax
,

est une condition suffisante de non singularité.
Si W normalisée, alors ωmax = 1 et ρ ∈ [0, 1[ est une condition suffisante
de non singularité de I − ρW .
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Chap 7 : Régression spatiale pour variables surfaciques Modèle LAG

Columbus : conditions sur paramètre ρ

La matrice W n’est pas symétrique mais est normalisée. Ses valeurs
propres sont

eigen(Wmat, symmetric = FALSE,only.values = TRUE)$values

[1] 1.000000e+00 9.687970e-01 9.388159e-01 8.748731e-01 8.476441e-01

[6] 7.655969e-01 6.907270e-01 -6.519546e-01 -6.009133e-01 5.873411e-01

[11] -5.637492e-01 5.508182e-01 5.361444e-01 -5.042972e-01 -5.000000e-01

[16] -4.955955e-01 -4.823929e-01 -4.750630e-01 -4.452039e-01 4.418332e-01

[21] -4.222511e-01 -4.122630e-01 -3.889661e-01 -3.826030e-01 -3.655755e-01

[26] -3.544676e-01 3.372218e-01 3.237003e-01 -3.179893e-01 -3.094258e-01

[31] 2.852730e-01 -2.721972e-01 -2.556928e-01 -2.500000e-01 -2.289888e-01

[36] -2.066596e-01 1.975947e-01 -1.935817e-01 -1.820426e-01 1.704262e-01

[41] -1.468052e-01 1.245939e-01 -1.089779e-01 -8.386006e-02 -5.486559e-02

[46] -3.749353e-02 3.428778e-02 1.818743e-02 8.322744e-17

La condition sur le paramètre ρ est donc −0.652 < ρ < 1
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Chap 7 : Régression spatiale pour variables surfaciques Modèle LAG

EMV dans le modèle LAG

On montre aisément que les estimateurs MCO sont biaisés dans ce modèle
et c’est pourquoi on doit recourir au maximum de vraisemblance.
Sous l’hypothèse de normalité des erreurs ε ∼ N (0, σ2I ), avec la notation
A(ρ) = (I − ρW ), la vraisemblance L = L(y | ρ, σ2) dans ce modèle s’écrit

L = fY (y) = fε(ε) | det(
∂ε

∂Y
) |= fε(ε) | det(A(ρ)) |

=
1

(σ
√

2π)n
exp(−‖ ε ‖

2

2σ2
) | det(A(ρ)) |

=
1

(2π)n/2σn
| det(A(ρ)) | ...

.. exp{− 1

2σ2
(y − A(ρ)−1Xβ)′A(ρ)′A(ρ)(y − A(ρ)−1Xβ)},
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Chap 7 : Régression spatiale pour variables surfaciques Modèle LAG

Calcul de LL dans le modèle LAG

D’où la log-vraisemblance LL = log L(y | ρ, σ2)

LL = −n

2
log(2π)− n log(σ) + log(det((I − ρW ))

− 1

2σ2
(y − A(ρ)−1Xβ)′A(ρ)′A(ρ)(y − A(ρ)−1Xβ).

avec A(ρ) = (I − ρW )
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Chap 7 : Régression spatiale pour variables surfaciques Modèle LAG

EMV dans le modèle LAG

Si l’on dérive par rapport à σ, β et ρ, on peut obtenir l’ expression
explicite suivante de σ̂ et β̂ en fonction de ρ̂

σ̂2(ρ) =
1

n
(y − A(ρ)−1X β̂(ρ))′A(ρ)′A(ρ)(y − A(ρ)−1X β̂(ρ)),

et

β̂(ρ) = (X ′X )−1X ′A(ρ)Y .

avec A(ρ) = (I − ρW )
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Chap 7 : Régression spatiale pour variables surfaciques Modèle LAG

EMV dans le modèle LAG

Lorsqu’on reporte ces expressions dans le log-vraisemblance, on obtient ce
qui s’appelle la log-vraisemblance concentrée qu’il reste à minimiser par
rapport à ρ et qui vaut à constante près

log L(y | ρ) = log(detA(ρ))

− n

2
log(y − A(ρ)−1Xβ)′A(ρ)′A(ρ)(y − A(ρ)−1Xβ)/n.

avec A(ρ) = (I − ρW )
Cette vraisemblance concentrée doit être optimisée numériquement et le
problème principal est celui de l’évaluation du terme en log déterminant
qui peut être couteux lorsque le nombre de sites devient grand : il faut
alors recourir à des approximations de ce terme (il en existe plusieurs).
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Chap 7 : Régression spatiale pour variables surfaciques Modèle LAG

Columbus : EMV du modèle LAG

Call:lagsarlm(formula = CRIME ~ INC + HOVAL, data = columbus, listw = listw)

Residuals:

Min 1Q Median 3Q Max

-37.4497095 -5.4565566 0.0016389 6.7159553 24.7107975

Type: lag

Coefficients: (asymptotic standard errors)

Estimate Std. Error z value Pr(>|z|)

(Intercept) 46.851429 7.314754 6.4051 1.503e-10

INC -1.073533 0.310872 -3.4533 0.0005538

HOVAL -0.269997 0.090128 -2.9957 0.0027381

Rho: 0.40389 LR test value: 8.4179 p-value: 0.0037154

Asymptotic standard error: 0.12071 z-value: 3.3459 p-value: 0.00082027

Wald statistic: 11.195 p-value: 0.00082027

Log likelihood: -183.1683 for lag model

ML residual variance (sigma squared): 99.164, (sigma: 9.9581)

Number of observations: 49

Number of parameters estimated: 5

AIC: 376.34, (AIC for lm: 382.75)

LM test for residual autocorrelation

test value: 0.19184 p-value: 0.66139
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Chap 7 : Régression spatiale pour variables surfaciques Modèle LAG

Interprétation des coefficients dans le modèle LAG

Dans un modèle OLS linéaire ordinaire Y = Xβ + ε, les dérivées des
coordonnées de Y par rapport à celles de X sont données par ∂yi

∂xik
= βk ,

pour tout i et k et ∂yi
∂xjk

= 0, pour tout k et j 6= i .

βk s’ interprète classiquement comme l’accroissement de E(Y ) quand la
k-ème variable explicative augmente d’une unité toutes choses égales par
ailleurs. Plus précisément, l’augmentation d’une unité de xik

n’a aucun effet sur Yj pour j 6= i

a le même effet sur Yi que l’augmentation d’une unité de xi ′k sur Yi ′
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Chap 7 : Régression spatiale pour variables surfaciques Modèle LAG

Interprétation des coefficients dans le modèle LAG

L’écriture de LAG par composante est yi =
∑p

t=1 St(W )itxt + ε̃i , où p est
le nombre de variables explicatives, xt est la t-ème colonne de la matrice
X et ε̃ = (I − ρW )−1ε.
Alors, les dérivées partielles de E(yi ) par rapport à xjt sont

∂E(yi )

∂xjt
= St(W )ij .

On remarque d’abord que la dérivée croisée de la i-ème composante E(yi )
par rapport à xjt pour j 6= i n’est plus nécéssairement nulle mais égale à
St(W )ij .
On en déduit qu’un changement sur l’une des variables explicatives pour
l’individu i va affecter non seulement yi mais aussi tous les yj : un
changement de la variable explicative dans une unité spatiale peut se
répercuter sur les Y de toutes les autres unités.
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Chap 7 : Régression spatiale pour variables surfaciques Modèle LAG

Interprétation des coefficients dans le modèle LAG

De plus, l’effet sur E(yi ) de l’accroissement d’une unité de la i-ème
composante de la t-ème variable explicative xit n’est plus nécéssairement
constant sur les i car égal à St(W )ii . On définit alors trois mesures
résumant ces effets pour chaque variable explicative t :
L’impact direct moyen ADI = 1

n

∑n
i=1

∂E(yi )
∂xit

mesure la moyenne de
l’effet de l’accroissement d’une unité de la variable t pour l’individu i sur
E(Yi ) pour ce même individu.

L’impact moyen total ATI = 1
n

∑
i ,j

∂E(yi )
∂xjt

, mesure l’effet moyen sur

E(Y ) de l’accroissement de xt d’une unité pour tous les individus. C’est la
moyenne sur les individus i de l’impact total de cet accroissement sur
E(Yi ) qui est mesuré par

∑
j
∂E(yi )
∂xjt

.
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Chap 7 : Régression spatiale pour variables surfaciques Modèle LAG

Interprétation des coefficients dans le modèle LAG

L’impact indirect moyen ou “spillover” AII = 1
n

∑
i 6=j

∂E(yi )
∂xjt

mesure la

moyenne de l’effet indirect sur chaque composante de E(Y ). L’effet
indirect sur E(Yi ) est mesuré par l’effet de l’accroissement d’une unité de
xjt pour tous les individus j 6= i .

L’impact moyen total est la somme de l’impact direct moyen et de
l’impact indirect moyen : ATI = ADI + AII
En raison de l’effet non linéaire de ρ, ces mesures d’impact sont des
fonctions non linéaires des paramètres : on recourt à des méthodes de
Monte Carlo pour tester leur significativité.
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Chap 7 : Régression spatiale pour variables surfaciques Modèle LAG

Columbus : calcul des effets

$direct.eff

INC HOVAL

-1.1225155 -0.2823163

$indirect.eff

INC HOVAL

-0.6783818 -0.1706152

$total.eff

INC HOVAL

-1.8008973 -0.4529315

Comparer aux coefficients

Coefficients:

Estimate

INC -1.073533

HOVAL -0.269997
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Chap 7 : Régression spatiale pour variables surfaciques Modèle LAG

Les trois tests sur les coefficients

Il existe trois tests classiques pour tester H0 : θ = θ0 contre l’alternative
H0 : θ 6= θ0, où θ peut-être soir l’un des paramètres β soit le paramètre ρ

test de Wald : TW

test du rapport de vraisemblance LR

test du multiplicateur de Lagrange LM

Ces trois tests sont asymptotiquement équivalents mais à distance finie on
a TW ≥ LR ≥ LM. Le test de Wald requiert l’estimation des paramètres
sous l’hypothèse alternative, le test du multiplicateur de Lagrange requiert
l’estimation des paramètres sous l’hypothèse nulle et le test du rapport de
vraisemblance requiert les deux estimations.
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Chap 7 : Régression spatiale pour variables surfaciques Modèle LAG

Les trois tests sur les coefficients : graphique

θ̂θ0

ln l(θ̂)

ln l(θ0) ln l(θ)

S(θ) =
∂ ln l(θ)

∂θ

W
LM

LR

H0 : θ = θ0

1
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Chap 7 : Régression spatiale pour variables surfaciques Modèle LAG

Le test du rapport de vraisemblance

θ̂ estimateur du maximum de vraisemblance de θ sous H1

Sous H0 :
LRθ = −2(LL(θ0)− LL(θ̂))→ χ2(1)

Christine Thomas-Agnan (TSE) Analyse statistique des données spatiales VI 29 octobre 2012 39 / 59



Chap 7 : Régression spatiale pour variables surfaciques Modèle LAG

Le test du score ou LM

Fonction Score : S(θ0) =
∂LL(θ0)

∂θ
Sous H0

LMθ =
S2(θ0)

nI (θ0)
→ χ2(1)

où I (θ) est ma matrice d’information de Fisher basée sur une observation.
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Chap 7 : Régression spatiale pour variables surfaciques Modèle LAG

Le test de Wald

Le test de Wald est basé sur (θ̂ − θ0)
Sous H0

TWθ =
(θ̂ − θ0)2

V̂ (θ̂)
→ χ2(1)
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Chap 7 : Régression spatiale pour variables surfaciques Modèle LAG

Le test du coefficient ρ : LM-lag

H0 : ρ = 0

c’est un test du modèle OLS sous H0 contre le modèle alternatif LAG
on fait un test de type LM avec la statistique

LMLAG =
[ε̂

′
Wy/σ̂2]2

Tsar

où ε̂ résidus du modèle OLS, σ̂2 variance résiduelle estimée par OLS et
Tsar = [(WX β̂)′P(WX β̂)]/σ̂2 + trace((W + W ′)W )

Sous H0

LMLAG → χ2(1)

Il existe une version robuste de ce test RLMLAG .
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Chap 7 : Régression spatiale pour variables surfaciques Modèle LAG

Columbus : le test de OLS contre LAG

lm.LMtests(ols_mod, col.listw, test="LMlag")

Lagrange multiplier diagnostics for spatial dependence

data:

model: lm(formula = CRIME ~ INC + HOVAL, data = columbus)

weights: col.listw

LMlag = 7.8557, df = 1, p-value = 0.005066

Le test rejette le modèle non spatial.
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Chap 7 : Régression spatiale pour variables surfaciques Modèle LAG

Prédiction dans le modèle LAG

Pour le calcul de Ŷi pour les unités spatiales i de l’échantillon, on dispose
de trois alternatives

1 Ŷ TC = (I − ρ̂W )−1X β̂

2 Ŷ TS = X β̂ + ρ̂WY

3 Ŷ BP = Ŷ TC − Diag(Q)−1(Q − Diag(Q))(Y − Ŷ TC ), où
Q = 1

σ2 (I − ρW ′)(I − ρW ).

La meilleure prédiction (BLUP) est donnée par Ŷ BP et Ŷ TS a un efficacité
relative assez bonne ; par contre Ŷ TC est mauvais.
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Chap 7 : Régression spatiale pour variables surfaciques Modèle LAG

Columbus : modèle spatial Durbin

Call:lagsarlm(formula = CRIME ~ INC + HOVAL,

data = columbus, listw = col.listw, type = "mixed")

Type: lag

Coefficients: (asymptotic standard errors)

Estimate Std. Error z value Pr(>|z|)

(Intercept) 45.592896 13.128680 3.4728 0.0005151

INC -0.939088 0.338229 -2.7765 0.0054950

HOVAL -0.299605 0.090843 -3.2980 0.0009736

lag_INC -0.618375 0.577052 -1.0716 0.2838954

lag_HOVAL 0.266615 0.183971 1.4492 0.1472760

Rho: 0.38251 LR test value: 4.1648 p-value: 0.041272

Asymptotic standard error: 0.16237 z-value: 2.3557 p-value: 0.018488

Wald statistic: 5.5493 p-value: 0.018488

Log likelihood: -182.0161 for lag model

ML residual variance (sigma squared): 95.051, (sigma: 9.7494)

Number of observations: 49

Number of parameters estimated: 7

AIC: 378.03, (AIC for lm: 380.2)

LM test for residual autocorrelation

test value: 0.101 p-value: 0.75063
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Chap 7 : Régression spatiale pour variables surfaciques Modèle SEM

Modèle à erreurs spatialement corrélées : SEM

Rappel
Y = Xβ + ε

ε = λW ε+ U,

Il y a dans ce modèle des contraintes sur le paramètre λ qui sont les
mêmes que les contraintes sur ρ dans le modèle LAG.
Si l’on pose A(λ) = I − λW , on a alors Y = Xβ + A(λ)−1ε et
ε = A(λ)(Y − Xβ).
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Chap 7 : Régression spatiale pour variables surfaciques Modèle SEM

Modèle à erreurs spatialement corrélées : SEM

Sous l’hypothèse de normalité des erreurs U ∼ N (0, σ2I ), la vraisemblance
de Y s’écrit alors :

L = fY (y) = fε(ε) | det(
∂ε

∂Y
) |

= fε(ε) det(A(λ))

=
1

(σ
√

2π)n
exp(−‖ ε ‖

2

σ2
) | det(A(λ)) |

d’où la log-vraisemblance

LL = ln(L) = −n

2
ln(2π)− n

2
lnσ2 + ln(det(A(λ)))

− 1

2σ2
(Y − Xβ)′A(λ)′A(λ)(Y − Xβ)
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Chap 7 : Régression spatiale pour variables surfaciques Modèle SEM

EMV dans le modèle SEM

A λ fixé, la maximisation de la log-vraisemblance se fait de façon
analytique et on obtient :

β̂(λ) = (X ′A(λ)′A(λ)X )−1X ′(A(λ)′A(λ))Y

σ̂2(λ) =
1

n
‖ Y − X β̂(λ) ‖2

A(λ)′A(λ)

Lorsqu’on reporte ces expressions dans la log-vraisemblance, on obtient la
log-vraisemblance “concentrée” qu’il reste à minimiser par rapport à λ et
qui vaut à constante près

log L(y | λ) = log(det((I − λW ))− n

2
log ‖ Y − X β̂(λ) ‖2

A(λ)′A(λ) .

Cette vraisemblance concentrée doit être optimisée numériquement (pb du
terme en log déterminant)
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Chap 7 : Régression spatiale pour variables surfaciques Modèle SEM

Columbus : EMV du modèle SEM

Call:

spautolm(formula = CRIME ~ INC + HOVAL, data = columbus, listw = col.listw)

Residuals:

Min 1Q Median 3Q Max

-34.45950 -6.21730 -0.69775 7.65256 24.23631

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 61.053619 5.314875 11.4873 < 2.2e-16

INC -0.995473 0.337025 -2.9537 0.0031398

HOVAL -0.307979 0.092584 -3.3265 0.0008794

Lambda: 0.52089 LR test value: 6.4441 p-value: 0.011132

Log likelihood: -184.1552

ML residual variance (sigma squared): 99.98, (sigma: 9.999)

Number of observations: 49

Number of parameters estimated: 5

AIC: 378.31
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Chap 7 : Régression spatiale pour variables surfaciques Modèle SEM

Columbus : EMV du modèle SEM, syntaxe alternative

Call:

errorsarlm(formula = CRIME ~ INC + HOVAL, data = columbus, listw = col.listw)

Residuals:

Min 1Q Median 3Q Max

-34.45950 -6.21730 -0.69775 7.65256 24.23631

Type: error

Coefficients: (asymptotic standard errors)

Estimate Std. Error z value Pr(>|z|)

(Intercept) 61.053618 5.314875 11.4873 < 2.2e-16

INC -0.995473 0.337025 -2.9537 0.0031398

HOVAL -0.307979 0.092584 -3.3265 0.0008794

Lambda: 0.52089 LR test value: 6.4441 p-value: 0.011132

Asymptotic standard error: 0.14129 z-value: 3.6868 p-value: 0.00022713

Wald statistic: 13.592 p-value: 0.00022713

Log likelihood: -184.1552 for error model

ML residual variance (sigma squared): 99.98, (sigma: 9.999)

Number of observations: 49

Number of parameters estimated: 5

AIC: 378.31, (AIC for lm: 382.75)

Notons que la syntaxe “spautolm” autorise des poids d’hétérsocédasticité contrairement à “errorsarlm”.
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Chap 7 : Régression spatiale pour variables surfaciques Modèle SEM

Le test LM du coefficient λ : LM-err

H0 : λ = 0

c’est un test du modèle OLS sous H0 contre le modèle alternatif SEM
on fait un test de type LM avec la statistique

LMERR =
[ε̂

′
W ε̂/σ̂2]2

Tsem

où Tsem = tr [(W
′

+ W )], ε̂ résidus du modèle OLS, et σ̂2 estimateur OLS
de σ2.

Sous H0

LMERR → χ2(1)

Il existe une version robuste de ce test RLMERR .
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Chap 7 : Régression spatiale pour variables surfaciques Modèle SEM

Columbus : test de OLM contre SEM

Lagrange multiplier diagnostics for spatial dependence

data:

model: lm(formula = CRIME ~ INC + HOVAL, data = columbus)

weights: col.listw

LMerr = 4.6111, df = 1, p-value = 0.03177

Ce test est moins significatif que le LMLAG donc on va préferer un modèle
LAG.
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Choix de modèle

Synthèse sur les tests

SAR y = ρWy + Xβ + ε

SAC

y = ρWy + Xβ + u

with u = λWu + ε

SEM
y = Xβ + u

with u = λWu + ε

WLS SDM

y = ρWy + Xβ + WXδ + ε

RLMLAG

ρ = 0

SARMA

ρ = λ = 0

LMERR

λ = 0

LMLAG

ρ = 0

δ = 0

ρ = 0

FC

δ = −λβ

δ = 0
RLMERR

λ = 0

1
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Choix de modèle

Stratégie par tests

1 Ajuster un modèle WLS puis un modèle mixte et choisir

2 faire les tests LMERR et LMLAG

3 si aucun des deux n’est significatif, garder le modèle de l’étape 1

4 si un seul est significatif : si c’est LMERR , garder un modèle SEM, si
c’est LMLAG , garder un modèle LAG

5 si les deux sont significatifs, faire les tests RLMERR et RLMLAG
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Choix de modèle

Stratégie par tests

Suite

1 si seul RLMERR est significatif, choisir SEM

2 si seul RLMLAG est significatif, choisir LAG

3 si les deux sont significatifs, choisir SAC

4 si aucun, choisir LAG (resp SEM) lorsque LMLAG est plus significatif
que LMERR (resp LMERR est plus significatif que LMLAG )
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Choix de modèle

Stratégie par critères

La stratégie par critère consiste à minimiser le critère d’Akaiké ou le critère
de Schwartz qui s’expriment en fonction de la log-vraisemblance et le
nombre de paramètres k

Akaiké : AIC = −2 log(L) + 2k

Schwartz : BIC = −2 log(L) + k log(n)
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Choix de modèle

Columbus : choix de modèle par tests

lm.LMtests(ols_mod, col.listw,test="all")

LMerr = 4.6111, df = 1, p-value = 0.03177

LMlag = 7.8557, df = 1, p-value = 0.005066

RLMerr = 0.0335, df = 1, p-value = 0.8547

RLMlag = 3.2781, df = 1, p-value = 0.07021

SARMA = 7.8892, df = 2, p-value = 0.01936

l’algorithme choisit le modèle LAG.
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Choix de modèle

Columbus : choix de modèle par critère

AIC(ols_mod,ols_croise,lagmodel,semmod,durbin)

df AIC

ols_mod 4 382.7545

ols_croise 6 380.1970

lagmodel 5 376.3366

semmod 5 378.3104

durbin 7 378.0322

le critère d’Akaiké choisit le modèle LAG.
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Choix de modèle

Conclusion

lorsqu’un test met en évidence de l’autocorrélation spatiale dans les
résidus d’un modèle WLS, on peut commencer par introduire d’autres
variables exogènes ou des exogènes spatialement décalées avant de se
tourner vers un modèle spatial

comment articuler le choix de variables et le choix de famille de
modèle ?

problème de niveau pour les tests consécutifs
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